1. |
Friedman D, Honig LS, Scarmeas N. Seizures and epilepsy in Alzheimer's disease. CNS neuroscience & therapeutics, 2012, 18(4): 285-294.
|
2. |
Haussmann R, Mayer T, Schrempf W, et al. Alzheimer's disease and epilepsy. Der Nervenarzt, 2017, 88(9): 1003-1009.
|
3. |
Kim DY, Carey BW, Wang H, et al. BACE1 regulates voltage-gated sodium channels and neuronal activity. Nature cell biology, 2007, 9(7): 755-764.
|
4. |
Lehnert S, Hartmann S, Hessler S, et al. Ion channel regulation by β-secretase BACE1–enzymatic and non-enzymatic effects beyond Alzheimer's disease. Channels, 2016, 10(5): 365-378.
|
5. |
Soh H, Pant R, LoTurco JJ, et al. Conditional deletions of epilepsy-associated KCNQ2 and KCNQ3 channels from cerebral cortex cause differential effects on neuronal excitability. Journal of Neuroscience, 2014, 34(15): 5311-5321.
|
6. |
Scharfman HE. Alzheimer’s disease and epilepsy: insight from animal models. Future neurology, 2012, 7(2): 177-192.
|
7. |
赵爱云, 崔群力. 阿尔茨海默病伴发癫痫临床分析. 中国实用神经疾病杂志, 2014, 17(14): 27-28.
|
8. |
Gorter JA, Van Vliet EA, Aronica E, et al. Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin‐immunoreactive neurons. European Journal of Neuroscience, 2010, 13(4): 657-669.
|
9. |
赵娟, 张彦妹, 郑乃智. 癫痫和阿尔茨海默病共病机制的研究进展. 中国医药导报, 2017, 14(21): 53-56.
|
10. |
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO molecular medicine, 2016, 8(6): 595-608.
|
11. |
Palop JJ, Chin J, Roberson ED, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron, 2007, 55(5): 697-711.
|
12. |
Giorgi FS, Saccaro LF, Busceti CL, et al. Epilepsy and Alzheimer’s Disease: Potential mechanisms for an association. Brain research bulletin, 2020, 160: 107-120.
|
13. |
熊敏, 苏化庆, 向明钧. 癫痫发病机制的研究进展. 中国当代医药, 2019, 026(030): 24-27.
|
14. |
Lei M, Xu H, Li Z, et al. Soluble Aβ oligomers impair hippocampal LTP by disrupting glutamatergic/GABAergic balance. Neurobiology of disease, 2016, 85: 111-121.
|
15. |
Verret L, Mann EO, Hang GB, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell, 2012, 149(3): 708-721.
|
16. |
Toral-Rios D, Pichardo-Rojas PS, Alonso-Vanegas M, et al. GSK3β and Tau Protein in Alzheimer's Disease and Epilepsy. Frontiers in Cellular Neuroscience, 2020, 14: 19-19.
|
17. |
Tai XY, Koepp M, Duncan JS, et al. Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections. Brain, 2016, 139(9): 2441-2455.
|
18. |
DeVos SL, Goncharoff DK, Chen G, et al. Antisense reduction of tau in adult mice protects against seizures. Journal of Neuroscience, 2013, 33(31): 12887-12897.
|
19. |
Decker JM, Krüger L, Sydow A, et al. The Tau/A152T mutation, a risk factor for frontotemporal‐spectrum disorders, leads to NR 2B receptor‐mediated excitotoxicity. EMBO reports, 2016, 17(4): 552-569.
|
20. |
Kanekiyo T, Bu G. Apolipoprotein E and Amyloid-β-independent mechanisms in Alzheimer’s disease//Genes, environment and Alzheimer's disease. Academic Press, 2016: 171-196.
|
21. |
Amit K, Manjari T, Pandey RM, et al. Apolipoprotein E in temporal lobe epilepsy: A case-control study. Disease Markers, 2014, 22(5-6): 335-342.
|
22. |
Liang Y, Zhou Z, Wang H, et al. Association of apolipoprotein E genotypes with epilepsy risk: A systematic review and meta-analysis. Epilepsy & Behavior, 2019, 98: 27-35.
|
23. |
Jonsson T, Atwal JK, Steinberg S, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature, 2012, 488(7409): 96-99.
|
24. |
Snider BJ, Norton J, Coats MA, et al. Novel presenilin 1 mutation (S170F) causing Alzheimer disease with Lewy bodies in the third decade of life. Archives of Neurology, 2005, 62(12): 1821-1830.
|
25. |
Watanabe H, Imaizumi K, Cai T, et al. Flexible and accurate substrate processing with distinct presenilin/γ-secretases in human cortical neurons. eNeuro, 2021, 8(2): 1-20.
|
26. |
de Haan W, Mott K, van Straaten EC, et al. Activity dependent degeneration explains hub vulnerability in Alzheimer's disease. Plos Computational Biology, 2012, 8(8): e1002582-e1002582.
|
27. |
Stefanovski L, Triebkorn P, Spiegler A, et al. Linking molecular pathways and large-scale computational modeling to assess candidate disease mechanisms and pharmacodynamics in Alzheimer's disease. Frontiers in Computational Neuroscience, 2019, 13: 54-54.
|
28. |
Lopes MA, Junges L, Woldman W, et al. The role of excitability and network structure in the emergence of focal and generalized seizures. Frontiers in Neurology, 2020, 11: 74-74.
|
29. |
Stam CJ, De Haan W, Daffertshofer A, et al. Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain, 2009, 132(1): 213-224.
|
30. |
Badhwar AP, Tam A, Dansereau C, et al. Resting-state network dysfunction in Alzheimer's disease: a systematic review and meta-analysis. Alzheimer's & Dementia:Diagnosis, Assessment & Disease Monitoring, 2017, 8: 73-85.
|
31. |
Woldman W, Schmidt H, Abela E, et al. Dynamic network properties of the interictal brain determine whether seizures appear focal or generalised. Scientific reports, 2020, 10(1): 1-11.
|
32. |
Tait L, Lopes MA, Stothart G, et al. A Large-Scale Brain Network Mechanism for Increased Seizure Propensity in Alzheimer's Disease. bioRxiv, 2021, Aug11;17(8): e1009252.
|
33. |
Arnaldi D, Donniaquio A, Mattioli P, et al. Epilepsy in neurodegenerative dementias: A clinical, epidemiological, and EEG study. Journal of Alzheimer's disease:JAD, 2020, 74(3): 865-74.
|
34. |
康慧聪, 朱遂强. 阿尔茨海默病与癫痫的关联性研究. 内科急危重症杂志, 2018, 24(3): 3-5+13.
|
35. |
刘真真, 曾可斌. 阿尔茨海默病伴发癫痫的研究进展. 中国实用神经疾病杂志, 2019, 22(23): 112-117.
|
36. |
王栋梁, 宋海栋, 许可, 等. 新型抗癫痫药物临床应用研究. 中国医学科学院学报, 2019, 41(4): 566-571.
|
37. |
Mäkinen J, Rainesalo S, Raitanen J, et al. The effect of newer antiepileptic drugs in combination therapy. Epilepsy research, 2017, 132: 15-20.
|
38. |
Sanchez PE, Zhu L, Verret L, et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(42): 16774-16775.
|
39. |
Belcastro V, Costa C, Galletti F, et al. Levetiracetam monotherapy in Alzheimer patients with late‐onset seizures: a prospective observational study. European journal of neurology, 2007, 14(10): 1176-1178.
|
40. |
Cumbo E, Ligori LD. Levetiracetam, lamotrigine, and phenobarbital in patients with epileptic seizures and Alzheimer’s disease. Epilepsy & Behavior, 2010, 17(4): 461-466.
|
41. |
Rowan AJ, Ramsay RE, Collins JF, et al. New onset geriatric epilepsy: a randomized study of gabapentin, lamotrigine, and carbamazepine. Neurology, 2005, 64(11): 1868-1873.
|
42. |
Cretin B. Pharmacotherapeutic strategies for treating epilepsy in patients with Alzheimer’s disease. Expert opinion on pharmacotherapy, 2018, 19(11): 1201-1209.
|
43. |
Giorgi FS, Guida M, Vergallo A, et al. Treatment of epilepsy in patients with Alzheimer’s disease. Expert review of neurotherapeutics, 2017, 17(3): 309-318.
|