蒋莉,
Email: dr_jiangcqmu@163.com
T型钙离子通道是一种低电压依赖性介导钙离子跨膜转运的膜蛋白,由于其特殊的电生理特性,在调节神经元兴奋性中具有重要作用。目前研究发现CACNA1H突变所致T型钙离子通道异常与多种神经系统疾病发生密切相关,如特发性全面性癫痫,孤独症谱系疾病,肌萎缩侧索硬化等,虽然其作为易感基因在疾病发生发展中的作用已得到一定证实,但致病机制尚不明确,本综述针对T型钙通道在神经系统中的电生理学作用,及CACNA1H突变与部分神经系统疾病之间关系进行探讨,旨在为突变致病机制的研究提供思路,并为后续精准治疗提供依据。
Citation: 刘晓睿, 蒋莉. CACNA1H基因变异与神经系统疾病. Journal of Epilepsy, 2022, 8(2): 146-150. doi: 10.7507/2096-0247.202111011 Copy
1. | Fatt P, Katz B. The electrical properties of crustacean muscle fibres. J Physiol, 1953, 120(1-2): 171-204. |
2. | Andrade A, Brennecke A, Mallat S, et al. Genetic associations between voltage-gated calcium channels and psychiatric disorders. Int J Mol Sci, 2019, 20(14): 3537. |
3. | Ertel EA, Campbell KP, Harpold MM, et al. Nomenclature of voltage-gated calcium channels. Neuron, 2000, 25(3): 533-535. |
4. | Lory P, Nicole S, Monteil A. Neuronal Cav3 channelopathies: recent progress and perspectives. Pflugers Arch, 2020, 472(7): 831-844. |
5. | Weiss N, Zamponi GW. Genetic T-type calcium channelopathies. J Med Genet, 2020, 57(1): 1-10. |
6. | Wolfe JT, Wang H, Howard J, et al. T-type calcium channel regulation by specific G-protein betagamma subunits. Nature, 2003, 424(6945): 209-213. |
7. | Mochida S, Westenbroek RE, Yokoyama CT, et al. Subtype-selective reconstitution of synaptic transmission in sympathetic ganglion neurons by expression of exogenous calcium channels. Proc Natl Acad Sci U S A, 2003, 100(5): 2813-2818. |
8. | Perez-Reyes E, Lory P. Molecular biology of T-type calcium channels. CNS Neurol Disord Drug Targets, 2006, 5(6): 605-609. |
9. | Williams ME, Washburn MS, Hans M, et al. Structure and functional characterization of a novel human low-voltage activated calcium channel. J Neurochem, 1999, 72(2): 791-799. |
10. | Iftinca MC. Neuronal T-type calcium channels: what's new? Iftinca: T-type channel regulation. J Med Life, 2011, 4(2): 126-138. |
11. | Deleuze C, David F, Béhuret S, et al. T-type calcium channels consolidate tonic action potential output of thalamic neurons to neocortex. J Neurosci, 2012, 32(35): 12228-12236. |
12. | Cain SM, Tyson JR, Choi HB, et al. Ca(V) 3. 2 drives sustained burst-firing, which is critical for absence seizure propagation in reticular thalamic neurons. Epilepsia, 2018, 59(4): 778-791. |
13. | Zamponi GW, Lory P, Perez-Reyes E. Role of voltage-gated calcium channels in epilepsy. Pflugers Arch, 2010, 460(2): 395-403. |
14. | Coulon P, Herr D, Kanyshkova T, et al. Burst discharges in neurons of the thalamic reticular nucleus are shaped by calcium-induced calcium release. Cell Calcium, 2009, 46(5-6): 333-346. |
15. | Tjaden J, Eickhoff A, Stahlke S, et al. Expression pattern of T-type Ca(2+) channels in cerebellar purkinje cells after VEGF treatment. Cells, 2021, 10(9): 2277. |
16. | Cain SM, Snutch TP. Contributions of T-type calcium channel isoforms to neuronal firing. Channels (Austin), 2010, 4(6): 475-482. |
17. | Su H, Sochivko D, Becker A, et al. Upregulation of a T-type Ca2+ channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J Neurosci, 2002, 22(9): 3645-3655. |
18. | Chen Y, Lu J, Pan H, et al. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol, 2003, 54(2): 239-243. |
19. | Becker F, Reid CA, Hallmann K, et al. Functional variants in HCN4 and CACNA1H may contribute to genetic generalized epilepsy. Epilepsia Open, 2017, 2(3): 334-342. |
20. | Heron SE, Khosravani H, Varela D, et al. Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol, 2007, 62(6): 560-568. |
21. | Vitko I, Chen Y, Arias JM, et al. Functional characterization and neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-type calcium channel. J Neurosci, 2005, 25(19): 4844-4855. |
22. | Glauser TA, Holland K, O'brien VP, et al. Pharmacogenetics of antiepileptic drug efficacy in childhood absence epilepsy. Ann Neurol, 2017, 81(3): 444-453. |
23. | Nigam A, Hargus NJ, Barker BS, et al. Inhibition of T-type calcium channels in mEC layer II stellate neurons reduces neuronal hyperexcitability associated with epilepsy. Epilepsy Res, 2019, 154: 132-138. |
24. | Chourasia N, Ossó-Rivera H, Ghosh A, et al. Expanding the phenotypic spectrum of CACNA1H mutations. Pediatr Neurol, 2019, 93: 50-55. |
25. | 胡笑月 华颖, 王艳萍. CACNA1H基因变异致癫痫伴肌阵挛-失张力发作1例临床及遗传学特征分析. 临床儿科杂志, 2020, 38(11): 821-823. |
26. | Stringer RN, Jurkovicova-Tarabova B, Souza IA, et al. De novo SCN8A and inherited rare CACNA1H variants associated with severe developmental and epileptic encephalopathy. Mol Brain, 2021, 14(1): 126. |
27. | Eckle VS, Shcheglovitov A, Vitko I, et al. Mechanisms by which a CACNA1H mutation in epilepsy patients increases seizure susceptibility. J Physiol, 2014, 592(4): 795-809. |
28. | Zamponi GW. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov, 2016, 15(1): 19-34. |
29. | Zhong X, Liu JR, Kyle JW, et al. A profile of alternative RNA splicing and transcript variation of CACNA1H, a human T-channel gene candidate for idiopathic generalized epilepsies. Hum Mol Genet, 2006, 15(9): 1497-1512. |
30. | Becker AJ, Pitsch J, Sochivko D, et al. Transcriptional upregulation of Cav3. 2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci, 2008, 28(49): 13341-13353. |
31. | Proft J, Rzhepetskyy Y, Lazniewska J, et al. The CACNA1H mutation in the GAERS model of absence epilepsy enhances T-type Ca(2+) currents by altering calnexin-dependent trafficking of Ca(v)3. 2 channels. Sci Rep, 2017, 7(1): 11513. |
32. | Kann O, Kovács R, Njunting M, et al. Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans . Brain, 2005, 128(Pt 10): 2396-2407. |
33. | Wang G, Bochorishvili G, Chen Y, et al. CaV3. 2 calcium channels control NMDA receptor-mediated transmission:a new mechanism for absence epilepsy. Genes Dev, 2015, 29(14): 1535-1551. |
34. | De La Torre-Ubieta L, Won H, Stein JL, et al. Advancing the understanding of autism disease mechanisms through genetics. Nat Med, 2016, 22(4): 345-361. |
35. | Liao X, Li Y. Genetic associations between voltage-gated calcium channels and autism spectrum disorder: a systematic review. Mol Brain, 2020, 13(1): 96. |
36. | Huang IY, Hsu YL, Chen CC, et al. Excavatolide-B enhances contextual memory retrieval via repressing the delayed rectifier potassium current in the hippocampus. Mar Drugs, 2018, 16(11): 405. |
37. | Splawski I, Yoo DS, Stotz SC, et al. CACNA1H mutations in autism spectrum disorders. J Biol Chem, 2006, 281(31): 22085-22091. |
38. | Long S, Zhou H, Li S, et al. The clinical and genetic features of co-occurring epilepsy and autism spectrum disorder in Chinese children. Front Neurol, 2019, 10: 505. |
39. | Rzhepetskyy Y, Lazniewska J, Blesneac I, et al. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3. 2 T-type calcium channel activity and reticular thalamic neuron firing. Channels (Austin), 2016, 10(6): 466-477. |
40. | Steinberg KM, Yu B, Koboldt DC, et al. Exome sequencing of case-unaffected-parents trios reveals recessive and de novo genetic variants in sporadic ALS. Sci Rep, 2015, 5: 9124. |
41. | Stringer RN, Jurkovicova-Tarabova B, Huang S, et al. A rare CACNA1H variant associated with amyotrophic lateral sclerosis causes complete loss of Ca(v)3. 2 T-type channel activity. Mol Brain, 2020, 13(1): 33. |
42. | Sharma KR, Sheriff S, Maudsley A, et al. Diffusion tensor imaging of basal ganglia and thalamus in amyotrophic lateral sclerosis. J Neuroimaging, 2013, 23(3): 368-374. |
43. | Park SB, Kiernan MC, Vucic S. Axonal excitability in amyotrophic lateral sclerosis: axonal excitability in ALS. Neurotherapeutics, 2017, 14(1): 78-90. |
44. | Liu Z, Yuan Y, Wang M, et al. Mutation spectrum of amyotrophic lateral sclerosis in Central South China. Neurobiol Aging, 2021, 107: 181-188. |
45. | Carter MT, Mcmillan HJ, Tomin A, et al. Compound heterozygous CACNA1H mutations associated with severe congenital amyotrophy. Channels (Austin), 2019, 13(1): 153-161. |
46. | Souza IA, Gandini MA, Zamponi GW. Splice-variant specific effects of a CACNA1H mutation associated with writer's cramp. Mol Brain, 2021, 14(1): 145. |
47. | Powell KL, Cain SM, Ng C, et al. A Cav3. 2 T-type calcium channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. J Neurosci, 2009, 29(2): 371-380. |
48. | Calhoun JD, Huffman AM, Bellinski I, et al. CACNA1H variants are not a cause of monogenic epilepsy. Hum Mutat, 2020, 41(6): 1138-1144. |
49. | Itcho K, Oki K, Ohno H, et al. Update on genetics of primary aldosteronism. Biomedicines, 2021, 9(4): 409. |
50. | Falcón D, González MR, Sánchez DDPE, et al. Dexamethasone-induced upregulation of Ca(V)3. 2 T-type Ca(2+) channels in rat cardiac myocytes. J Steroid Biochem Mol Biol, 2018, 178: 193-202. |
- 1. Fatt P, Katz B. The electrical properties of crustacean muscle fibres. J Physiol, 1953, 120(1-2): 171-204.
- 2. Andrade A, Brennecke A, Mallat S, et al. Genetic associations between voltage-gated calcium channels and psychiatric disorders. Int J Mol Sci, 2019, 20(14): 3537.
- 3. Ertel EA, Campbell KP, Harpold MM, et al. Nomenclature of voltage-gated calcium channels. Neuron, 2000, 25(3): 533-535.
- 4. Lory P, Nicole S, Monteil A. Neuronal Cav3 channelopathies: recent progress and perspectives. Pflugers Arch, 2020, 472(7): 831-844.
- 5. Weiss N, Zamponi GW. Genetic T-type calcium channelopathies. J Med Genet, 2020, 57(1): 1-10.
- 6. Wolfe JT, Wang H, Howard J, et al. T-type calcium channel regulation by specific G-protein betagamma subunits. Nature, 2003, 424(6945): 209-213.
- 7. Mochida S, Westenbroek RE, Yokoyama CT, et al. Subtype-selective reconstitution of synaptic transmission in sympathetic ganglion neurons by expression of exogenous calcium channels. Proc Natl Acad Sci U S A, 2003, 100(5): 2813-2818.
- 8. Perez-Reyes E, Lory P. Molecular biology of T-type calcium channels. CNS Neurol Disord Drug Targets, 2006, 5(6): 605-609.
- 9. Williams ME, Washburn MS, Hans M, et al. Structure and functional characterization of a novel human low-voltage activated calcium channel. J Neurochem, 1999, 72(2): 791-799.
- 10. Iftinca MC. Neuronal T-type calcium channels: what's new? Iftinca: T-type channel regulation. J Med Life, 2011, 4(2): 126-138.
- 11. Deleuze C, David F, Béhuret S, et al. T-type calcium channels consolidate tonic action potential output of thalamic neurons to neocortex. J Neurosci, 2012, 32(35): 12228-12236.
- 12. Cain SM, Tyson JR, Choi HB, et al. Ca(V) 3. 2 drives sustained burst-firing, which is critical for absence seizure propagation in reticular thalamic neurons. Epilepsia, 2018, 59(4): 778-791.
- 13. Zamponi GW, Lory P, Perez-Reyes E. Role of voltage-gated calcium channels in epilepsy. Pflugers Arch, 2010, 460(2): 395-403.
- 14. Coulon P, Herr D, Kanyshkova T, et al. Burst discharges in neurons of the thalamic reticular nucleus are shaped by calcium-induced calcium release. Cell Calcium, 2009, 46(5-6): 333-346.
- 15. Tjaden J, Eickhoff A, Stahlke S, et al. Expression pattern of T-type Ca(2+) channels in cerebellar purkinje cells after VEGF treatment. Cells, 2021, 10(9): 2277.
- 16. Cain SM, Snutch TP. Contributions of T-type calcium channel isoforms to neuronal firing. Channels (Austin), 2010, 4(6): 475-482.
- 17. Su H, Sochivko D, Becker A, et al. Upregulation of a T-type Ca2+ channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J Neurosci, 2002, 22(9): 3645-3655.
- 18. Chen Y, Lu J, Pan H, et al. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol, 2003, 54(2): 239-243.
- 19. Becker F, Reid CA, Hallmann K, et al. Functional variants in HCN4 and CACNA1H may contribute to genetic generalized epilepsy. Epilepsia Open, 2017, 2(3): 334-342.
- 20. Heron SE, Khosravani H, Varela D, et al. Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol, 2007, 62(6): 560-568.
- 21. Vitko I, Chen Y, Arias JM, et al. Functional characterization and neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-type calcium channel. J Neurosci, 2005, 25(19): 4844-4855.
- 22. Glauser TA, Holland K, O'brien VP, et al. Pharmacogenetics of antiepileptic drug efficacy in childhood absence epilepsy. Ann Neurol, 2017, 81(3): 444-453.
- 23. Nigam A, Hargus NJ, Barker BS, et al. Inhibition of T-type calcium channels in mEC layer II stellate neurons reduces neuronal hyperexcitability associated with epilepsy. Epilepsy Res, 2019, 154: 132-138.
- 24. Chourasia N, Ossó-Rivera H, Ghosh A, et al. Expanding the phenotypic spectrum of CACNA1H mutations. Pediatr Neurol, 2019, 93: 50-55.
- 25. 胡笑月 华颖, 王艳萍. CACNA1H基因变异致癫痫伴肌阵挛-失张力发作1例临床及遗传学特征分析. 临床儿科杂志, 2020, 38(11): 821-823.
- 26. Stringer RN, Jurkovicova-Tarabova B, Souza IA, et al. De novo SCN8A and inherited rare CACNA1H variants associated with severe developmental and epileptic encephalopathy. Mol Brain, 2021, 14(1): 126.
- 27. Eckle VS, Shcheglovitov A, Vitko I, et al. Mechanisms by which a CACNA1H mutation in epilepsy patients increases seizure susceptibility. J Physiol, 2014, 592(4): 795-809.
- 28. Zamponi GW. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov, 2016, 15(1): 19-34.
- 29. Zhong X, Liu JR, Kyle JW, et al. A profile of alternative RNA splicing and transcript variation of CACNA1H, a human T-channel gene candidate for idiopathic generalized epilepsies. Hum Mol Genet, 2006, 15(9): 1497-1512.
- 30. Becker AJ, Pitsch J, Sochivko D, et al. Transcriptional upregulation of Cav3. 2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci, 2008, 28(49): 13341-13353.
- 31. Proft J, Rzhepetskyy Y, Lazniewska J, et al. The CACNA1H mutation in the GAERS model of absence epilepsy enhances T-type Ca(2+) currents by altering calnexin-dependent trafficking of Ca(v)3. 2 channels. Sci Rep, 2017, 7(1): 11513.
- 32. Kann O, Kovács R, Njunting M, et al. Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans . Brain, 2005, 128(Pt 10): 2396-2407.
- 33. Wang G, Bochorishvili G, Chen Y, et al. CaV3. 2 calcium channels control NMDA receptor-mediated transmission:a new mechanism for absence epilepsy. Genes Dev, 2015, 29(14): 1535-1551.
- 34. De La Torre-Ubieta L, Won H, Stein JL, et al. Advancing the understanding of autism disease mechanisms through genetics. Nat Med, 2016, 22(4): 345-361.
- 35. Liao X, Li Y. Genetic associations between voltage-gated calcium channels and autism spectrum disorder: a systematic review. Mol Brain, 2020, 13(1): 96.
- 36. Huang IY, Hsu YL, Chen CC, et al. Excavatolide-B enhances contextual memory retrieval via repressing the delayed rectifier potassium current in the hippocampus. Mar Drugs, 2018, 16(11): 405.
- 37. Splawski I, Yoo DS, Stotz SC, et al. CACNA1H mutations in autism spectrum disorders. J Biol Chem, 2006, 281(31): 22085-22091.
- 38. Long S, Zhou H, Li S, et al. The clinical and genetic features of co-occurring epilepsy and autism spectrum disorder in Chinese children. Front Neurol, 2019, 10: 505.
- 39. Rzhepetskyy Y, Lazniewska J, Blesneac I, et al. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3. 2 T-type calcium channel activity and reticular thalamic neuron firing. Channels (Austin), 2016, 10(6): 466-477.
- 40. Steinberg KM, Yu B, Koboldt DC, et al. Exome sequencing of case-unaffected-parents trios reveals recessive and de novo genetic variants in sporadic ALS. Sci Rep, 2015, 5: 9124.
- 41. Stringer RN, Jurkovicova-Tarabova B, Huang S, et al. A rare CACNA1H variant associated with amyotrophic lateral sclerosis causes complete loss of Ca(v)3. 2 T-type channel activity. Mol Brain, 2020, 13(1): 33.
- 42. Sharma KR, Sheriff S, Maudsley A, et al. Diffusion tensor imaging of basal ganglia and thalamus in amyotrophic lateral sclerosis. J Neuroimaging, 2013, 23(3): 368-374.
- 43. Park SB, Kiernan MC, Vucic S. Axonal excitability in amyotrophic lateral sclerosis: axonal excitability in ALS. Neurotherapeutics, 2017, 14(1): 78-90.
- 44. Liu Z, Yuan Y, Wang M, et al. Mutation spectrum of amyotrophic lateral sclerosis in Central South China. Neurobiol Aging, 2021, 107: 181-188.
- 45. Carter MT, Mcmillan HJ, Tomin A, et al. Compound heterozygous CACNA1H mutations associated with severe congenital amyotrophy. Channels (Austin), 2019, 13(1): 153-161.
- 46. Souza IA, Gandini MA, Zamponi GW. Splice-variant specific effects of a CACNA1H mutation associated with writer's cramp. Mol Brain, 2021, 14(1): 145.
- 47. Powell KL, Cain SM, Ng C, et al. A Cav3. 2 T-type calcium channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. J Neurosci, 2009, 29(2): 371-380.
- 48. Calhoun JD, Huffman AM, Bellinski I, et al. CACNA1H variants are not a cause of monogenic epilepsy. Hum Mutat, 2020, 41(6): 1138-1144.
- 49. Itcho K, Oki K, Ohno H, et al. Update on genetics of primary aldosteronism. Biomedicines, 2021, 9(4): 409.
- 50. Falcón D, González MR, Sánchez DDPE, et al. Dexamethasone-induced upregulation of Ca(V)3. 2 T-type Ca(2+) channels in rat cardiac myocytes. J Steroid Biochem Mol Biol, 2018, 178: 193-202.
-
Previous Article
轻度皮质发育畸形伴少突胶质细胞增生及癫痫(MOGHE)—一个新的临床组织病理学实体 -
Next Article
SCN8A基因相关癫痫研究进展