1. |
Thijs RD, Surges R, O'Brien TJ, et al. Epilepsy in adults. Lancet, 2019, 393(10172): 689-701.
|
2. |
Klein P, Dingledine R, Aronica E, et al. Commonalities in epileptogenic processes from different acute brain insults: Do they translate? Epilepsia, 2018, 59(1): 37-66.
|
3. |
Simonato M. Epilepsy an update on disease mechanisms: the potential role of MicroRNAs. Frontiers in Neurology, 2018, 9: 176.
|
4. |
Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nature Reviews Neurology, 2019, 15(8): 459-472.
|
5. |
Jerath NU, Shy ME. Asymmetric ataxia, depression, memory loss, epilepsy, and axonal neuropathy associated with a heterozygous dna polymerase gamma variant of uncertain significance, c1370G>a (R457Q). Journal of Neuromuscular Diseases, 2018, 5(1): 99-104.
|
6. |
Li S, Sheng ZH. Energy matters: presynaptic metabolism and the maintenance of synaptic transmission. Nature Reviews Neuroscience, 2022, 23(1): 4-22.
|
7. |
刘楠, 邢岩, 张洁. 1例NDUFA1基因突变所致Leigh综合征及家系报道. 神经损伤与功能重建, 2022, 17(6): 369-371.
|
8. |
Martin-Mcgill K, Bresnahan R, Levy R, et al. Ketogenic diets for drug-resistant epilepsy. The Cochrane Database of Systematic Reviews, 2020, 6(6): CD001903.
|
9. |
De Souza Neves G, Dos Santos Lunardi M, Papini Gabiatti M, et al. Cardiometabolic risk and effectiveness of the modified atkins ketogenic diet for adult patients with pharmacoresistant epilepsies in a middle-incomecountry. Epilepsy Research, 2020, 160: 106280.
|
10. |
包钟元, 季晶. 铁死亡在颅脑外伤中的研究进展. 南京医科大学学报(自然科学版), 2022, 42(2): 270-278.
|
11. |
Rho JM, Boison D. The metabolic basis of epilepsy. Nature Reviews Neurology, 2022, 18(6): 333-347.
|
12. |
Srivastava NK, Mukherjee S, Sharma R, et al. Altered lipid metabolism in post-traumatic epileptic rat model: one proposed pathway. Molecular Biology Reports, 2019, 46(2): 1757-1773.
|
13. |
Goyal A, Gopika S, Agrawal N. Basic leucine zipper protein nuclear factor erythroid 2-related factor 2 as a potential therapeutic target in brain related disorders. Protein and peptide letters, 2022, 29(8): 676-691.
|
14. |
Liu L, Zhang K, Sandoval H, et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell, 2015, 160(1-2): 177-190.
|
15. |
Yang N, Guan QW, Chen FH, et al. Antioxidants targeting mitochondrial oxidative stress: promising neuroprotectants for epilepsy. Oxidative Medicine and Cellular Longevity, 2020, 2020: 6687185.
|
16. |
李传朋, 高颖, 高永红, 等. 脑缺血再灌注损伤中钙超载相关通路研究进展. 中国医药导报, 2022, 19(12): 46-50.
|
17. |
Cappuccio G, Pinelli M, Alagia M, et al. Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet. PloS One, 2017, 12(9): e0184022.
|
18. |
Depp C, Bas-Orth C, Schroeder L, et al. Synaptic activity protects neurons against calcium-mediated oxidation and contraction of mitochondria during excitotoxicity. Antioxidants & Redox Signaling, 2018, 29(12): 1109-1124.
|
19. |
符敏峰. 小儿癫痫应用丙戊酸钠结合左乙拉西坦治疗的效果. 吉林医学, 2021, 42(6): 1423-1424.
|
20. |
Yan C, Duanmu X, Zeng L, et al. Mitochondrial DNA: distribution, mutations, and elimination. Cells, 2019, 8(4): 379-379.
|
21. |
孙翀, 陆珺, 奚剑英, 等. 线粒体基因8344A >G突变相关肌阵挛性癫痫伴破碎红纤维-Leigh叠加综合征一例. 中华神经科杂志, 2021, 54(10): 1059-1063.
|
22. |
Finsterer J. Photosensitive epilepsy and polycystic ovary syndrome as manifestations of MERRF. Case Reports in Neurological Medicine, 2020, 2020: 8876272.
|
23. |
李生瑞. 儿童原发性线粒体病相关癫痫的临床/遗传学特征及危险因素分析. 重庆医科大学, 2022, 硕士学位论文.
|
24. |
Wang L, Lu Z, Zhao J, et al. Selective oxidative stress induces dual damage to telomeres and mitochondria in human T cells. Aging Cell, 2021, 20(12): e13513.
|
25. |
Guerrero-Molina MP, Morales-Conejo M, Delmiro A, et al. Elevated glutamate and decreased glutamine levelsin the cerebrospinal fluid of patients with MELAS syndrome. Journal of Neurology, 2022, 269(6): 3238-3248.
|
26. |
Capristo M, Del Dotto V, Tropeano CV, et al. Rapamycin rescues mitochondrial dysfunction in cells carrying the m. 8344A > G mutation in the mitochondrial tRNA. Molecular Medicine (Cambridge, Mass. ), 2022, 28(1): 90-90.
|
27. |
Simani L, Rezaei O, Ryan F, et al. Coenzyme Q10 insufficiency contributes to the duration and frequency of seizures in epileptic patients. Basic and Clinical Neuroscience, 2020, 11(6): 765-771.
|
28. |
Arntsen V, Sand T, Hikmat O, et al. A characteristic occipital epileptiform EEG pattern in ADCK3-related mitochondrial disease. Epileptic Disorders, 2021, 23(2): 281-290.
|
29. |
陈先睿, 许锦平, 姚拥华. 原发性辅酶Q10缺乏7型一例并文献复习. 中华儿科杂志, 2020, 58(11): 928-932.
|
30. |
Bhardwaj M, Kumar A. Neuroprotective mechanism of Coenzyme Q10 (CoQ10) against PTZ induced kindling and associated cognitive dysfunction: possible role of microglia inhibition. Pharmacological Reports, 2016, 68(6): 1301-1311.
|
31. |
Pradhan N, Singh C, Singh A. Coenzyme Q10 a mitochondrial restorer for various brain disorders. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394(11): 2197-2222.
|
32. |
Han Y, Lin Y, Xie N, et al. Impaired mitochondrial biogenesis in hippocampi of rats with chronic seizures. Neuroscience, 2011, 194(1): 234-240.
|
33. |
张海峰. 匹罗卡品致痫小鼠海马神经元线粒体移动变化研究. 郑州大学, 2016, 博士学位论文.
|
34. |
Saotome M, Safiulina D, Szabadkai G, et al. Bidirectional Ca2+-dependent control of mitochondrial dynamicsby the Miro GTPase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(52): 20728-20733.
|
35. |
Vig S, Lambooij JM, Zaldumbide A, et al. Endoplasmic reticulum-mitochondria crosstalk and beta-cell destruction in type 1 diabetes. Frontiers in immunology, 2021, 12: 669492.
|
36. |
Varhaug KN, Vedeler CA, Tzoulis C, et al. Multiple sclerosis-a mitochondria-mediated disease? Tidsskrift For Den Norske Laegeforening, 2017, 137(4): 284-287.
|