- 1. Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China;
- 2. Systematic Epilepsy Treatment Center in Henan, Zhengzhou 450052, China;
- 3. Department of Rehabilitative Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China;
Genetic epilepsy with febrile seizures plus (GEFS+) is a new type of genetic epilepsy syndrome with a marked hereditary tendency. Febrile seizure is the most common clinical symptom, followed by febrile seizure plus, and with/without absence seizures, focal seizures, and generalized tonic-clonic seizures. Results of the polymerase chain reaction (PCR), exon sequencing and single nucleotide polymorphism (SNP) analysis showed that the occurrence of GEFS+ is mainly related to the mutation of gamma aminobutyric acid type A receptor gamma 2 subunit (GABRG2), but its pathogenesis was still unclear. The main types of GABRG2 mutations include missense mutation, nonsense mutation, frameshift mutation, point mutation and splice site mutation. All these types of mutations can reduce the function of ion channels on cell membrane, but the degree and mechanism of dysfunction are different, which may be the main mechanism of epilepsy. This article will focus on the relationship between GEFS+ and the mutation types of GABRG2 in recent years, which is of great significance for clinical accurate diagnosis, anti-epileptic treatment strategy and new drug development.
Citation: LI Xinxiao, GUO Shengnan, JIANG Zhansheng, LI Peidong. Advances in molecular genetics of genetic epilepsy with febrile seizure plus caused by GABRG2 mutation. Journal of Epilepsy, 2023, 9(3): 235-242. doi: 10.7507/2096-0247.202303007 Copy
1. | Scheffer IE, Berkovic SF. Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain, 1997, 120(Pt3): 479-490. |
2. | Engel JJr. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia, 2001, 42(6): 796-803. |
3. | Singh R, Scheffer IE, Crossland K, et al. Generalized epilepsy with febrile seizures plus: a common childhood-onset genetic epilepsy syndrome. Ann Neurol, 1999, 45(1): 75-81. |
4. | Lerche H, Weber YG, Baier H, et al. Generalized epilepsy with febrile seizures plus: further heterogeneity in a large family. Neurology, 2001, 57(7): 1191-1198. |
5. | Scheffer IE, Zhang YH, Jansen FE, et al. Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus? Brain Dev, 2009, 31(5): 394-400. |
6. | Scanlon A, Cook SS. Febrile seizures, genetic (generalized) epilepsy with febrile seizures plus, and Dravet's syndrome. J Spec Pediatr Nurs, 2010, 15(2): 154-159. |
7. | Lin H, Li J, Wang M, et al. Mutation screening of three Chinese families with genetic epilepsy with febrile seizures plus. Neurosci Lett, 2011, 500(2): 123-128. |
8. | Whiting PJ. The GABAA receptor gene family: new targets for therapeutic intervention. Neurochem Int, 1999, 34(5): 387-390. |
9. | Kang JQ, Macdonald RL. Molecular pathogenic basis for GABRG2 mutations associated with a spectrum of epilepsy syndromes, from generalized absence epilepsy to Dravet Syndrome. JAMA Neurol, 2016, 73(8): 1009-1016. |
10. | McKernan RM, Whiting PJ. Which GABAA receptor subtypes really occur in the brain? Trends Neurosci, 1996, 19(4): 139-143. |
11. | Haas KF, Macdonald RL. GABAA receptor subunit gamma2 and delta subtypes confer unique kinetic properties on recombinant GABAA receptor currents in mouse fibroblasts. J Physiol, 1999, 514(Pt1): 27-45. |
12. | Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58(4): 512-521. |
13. | Fisher RS, Cross JH, French JA, et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58(4): 522-530. |
14. | Berg AT, Berkovic SF, Brodie MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia, 2010, 51(4): 676-685. |
15. | Scheffer IE, Harkin LA, Grinton BE, et al. Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain, 2007, 130(Pt1): 100-109. |
16. | Camfield P, Camfield C. Febrile seizures and genetic epilepsy with febrile seizures plus GEFS+. Epileptic Disord, 2015, 17(2): 124-133. |
17. | Bouthour W, Leroy F, Emmanuelli C, et al. A human mutation in Gabrg2 associated with generalized epilepsy alters the membrane dynamics of GABAA receptors. Cereb Cortex, 2012, 22(7): 1542-1553. |
18. | Polizzi A, Incorpora G, Pavone P, et al. Generalised epilepsy with febrile seizures plus GEFS+: molecular analysis in a restricted area. Childs Nerv Syst, 2012, 28(1): 141-145. |
19. | Zhang YH, Burgess R, Malone JP, et al. Genetic epilepsy with febrile seizures plus: Refining the spectrum. Neurology, 2017, 89(12): 1210-1219. |
20. | Kivity S, Oliver KL, Afawi Z, et al. SCN1A clinical spectrum includes the self-limited focal epilepsies of childhood. Epilepsy Res, 2017, 131: 9-14. |
21. | Wallace RH, Wang DW, Singh R, et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nat Genet, 1998, 19(4): 366-70. |
22. | Escayg A, MacDonald BT, Meisler MH, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+. Nat Genet, 2000, 24(4): 343-345. |
23. | Sugawara T, Tsurubuchi Y, Agarwala KL, et al. A missense mutation of the Na+ channel alpha II subunit gene Na(v)1. 2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci USA, 2001, 98(11): 6384-6389. |
24. | Chou IC, Lin WD, Wang CH, et al. Interleukin (IL)-1beta, IL-1 receptor antagonist, IL-6, IL-8, IL-10, and tumor necrosis factor alpha gene polymorphisms in patients with febrile seizures. J Clin Lab Anal, 2010, 24(3): 154-159. |
25. | Wallace RH, Marini C, Petrou S, et al. Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet, 2001, 28(1): 49-52. |
26. | Bowser DN, Wagner DA, Czajkowski C, et al. Altered kinetics and benzodiazepine sensitivity of a GABAA receptor subunit mutation [γ2(R43Q)] found in human epilepsy. Proc Natl Acad Sci USA, 2002, 99(23): 15170-15175. |
27. | Nicolazzo JA, Steuten JA, Charman SA, et al. Brain uptake of diazepam and phenytoin in a genetic animal model of absence epilepsy. Clin Exp Pharmacol Physiol, 2010, 37(5-6): 647-649. |
28. | Sancar F, Czajkowski C. A GABAA receptor mutation linked to human epilepsy (γ2R43Q) impairs cell surface expression of αβγ receptors. J Biol Chem, 2004, 279(45): 47034-47039. |
29. | Kang JQ, Macdonald RL. The GABAA receptor γ2 subunit R43Q mutation linked to childhood absence epilepsy and febrile seizures causes retention of α1β2γ2S receptors in the endoplasmic reticulum. J Neurosci, 2004, 24(40): 8672-8677. |
30. | Hales TG, Tang H, Bollan KA, et al. The epilepsy mutation, γ2(R43Q) disrupts a highly conserved inter-subunit contact site, perturbing the biogenesis of GABAA receptors. Mol Cell Neurosci, 2005, 29(1): 120-127. |
31. | Tan HO, Reid CA, Single FN, et al. Reduced cortical inhibition in a mouse model of familial childhood absence epilepsy. Proc Natl Acad Sci USA, 2007, 104(44): 17536-17541. |
32. | Witsch J, Golkowski D, Hahn TT, et al. Cortical alterations in a model for absence epilepsy and febrile seizures: in vivo findings in mice carrying a human GABA(A)R gamma2 subunit mutation. Neurobiol Dis, 2015, 77: 62-70. |
33. | Chaumont S, André C, Perrais D, et al. Agonist-dependent endocytosis of γ-aminobutyric acid type A (GABAA) receptors revealed by a γ2(R43Q) epilepsy mutation. J Biol Chem, 2013, 288(39): 28254-65. |
34. | Chiu C, Reid CA, Tan HO, et al. Developmental impact of a familial GABAA receptor epilepsy mutation. Ann Neurol, 2008, 64(3): 284-293. |
35. | Richards KL, Kurniawan ND, Yang Z, et al. Hippocampal volume and cell density changes in a mouse model of human genetic epilepsy. Neurology, 2013, 80(13): 1240-1246. |
36. | Wimmer VC, Li MY, Berkovic SF, et al. Cortical microarchitecture changes in genetic epilepsy. Neurology, 2015, 84(13): 1308-1316. |
37. | Currie SP, Luz LL, Booker SA, et al. Reduced local input to fast-spiking interneurons in the somatosensory cortex in the GABAA γ2 R43Q mouse model of absence epilepsy. Epilepsia, 2017, 58(4): 597-607. |
38. | Audenaert D, Schwartz E, Claeys KG, et al. A novel GABRG2 mutation associated with febrile seizures. Neurology, 2006, 67(4): 687-690. |
39. | Baulac S, Huberfeld G, Gourfinkel-An I, et al. First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nat Genet, 2001, 28(1): 46-48. |
40. | Bianchi MT, Macdonald RL. Agonist trapping by GABAA receptor channels. J Neurosci, 2001, 21(23): 9083-9091. |
41. | Bianchi MT, Song L, Zhang H, et al. Two different mechanisms of disinhibition produced by GABAA receptor mutations linked to epilepsy in humans. J Neurosci, 2002, 22(13): 5321-5327. |
42. | Macdonald RL, Bianchi MT, Feng H. Mutations linked to generalized epilepsy in humans reduce GABAA receptor current. Exp Neurol, 2003, 184(Suppl 1): 58-67. |
43. | Eugène E, Depienne C, Baulac S, et al. GABAA receptor γ2 subunit mutations linked to human epileptic syndromes differentially affect phasic and tonic inhibition. J Neurosci, 2007, 27(51): 14108-14116. |
44. | Xiumin Wang, Meichun Xu, Lizhong Du. Association analysis of γ2 subunit of gamma-aminobutyric acid (GABA) type A receptor and voltage-gated sodium channel type II alpha-polypeptide gene mutation in southern Chinese children with febrile seizures. J Child Neurol, 2007, 22(6): 714-719. |
45. | Huang X, Hernandez CC, Hu N, et al. Three epilepsy-associated GABRG2 missense mutations at the γ+/β- interface disrupt GABAA receptor assembly and trafficking by similar mechanisms but to different extents. Neurobiol Dis, 2014, 68: 167-179. |
46. | Lachance-Touchette P, Brown P, Meloche C, et al. Novel α1 and γ2 GABAA receptor subunit mutations in families with idiopathic generalized epilepsy. Eur J Neurosci, 2011, 34(2): 237-249. |
47. | Todd E, Gurba KN, Botzolakis EJ, et al. GABAA receptor biogenesis is impaired by the γ2 subunit febrile seizure-associated mutation, GABRG2(R177G). Neurobiol Dis, 2014, 69: 215-224. |
48. | Shi X, Huang MC, Ishii A, et al. Mutational analysis of GABRG2 in a Japanese cohort with childhood epilepsies. J Hum Genet, 2010, 55(6): 375-378. |
49. | Migita K, Yamada J, Nikaido Y, et al. Properties of a novel GABAA receptor γ2 subunit mutation associated with seizures. J Pharmacol Sci, 2013, 121(1): 84-87. |
50. | Shen D, Hernandez CC, Shen W, et ak. De novo GABRG2 mutations associated with epileptic encephalopathies. Brain, 2017, 140(1): 49-67. |
51. | Reinthaler EM, Dejanovic B, Lal D, et al. Rare variants in γ-aminobutyric acid type A receptor genes in rolandic epilepsy and related syndromes. Ann Neurol, 2015, 77(6): 972-986. |
52. | Absalom NL, Ahring PK, Liao VW, et al. Functional genomics of epilepsy-associated mutations in the GABAA receptor subunits reveal that one mutation impairs function and two are catastrophic. J Biol Chem, 2019, 294(15): 6157-6171. |
53. | Zou F, McWalter K, Schmidt L, et al. Expanding the phenotypic spectrum of GABRG2 variants: a recurrent GABRG2 missense variant associated with a severe phenotype. J Neurogenet, 2017, 31(1-2): 30-36. |
54. | Komulainen-Ebrahim J, Schreiber JM, Kangas SM, et al. Novel variants and phenotypes widen the phenotypic spectrum of GABRG2-related disorders. Seizure, 2019, 69: 99-104. |
55. | Hernandez CC, Kong W, Hu N, et al. Altered channel conductance states and gating of GABAA receptors by a pore mutation linked to Dravet syndrome. eNeuro, 2017, 4(1): 025116. |
56. | Boillot M, Morin-Brureau M, Picard F, et al. Novel GABRG2 mutations cause familial febrile seizures. Neurol Genet, 2015, 1(4): e35. |
57. | Johnston AJ, Kang JQ, Shen W, et al. A novel GABRG2 mutation, p. R136*, in a family with GEFS+ and extended phenotypes. Neurobiol Dis, 2014, 64: 131-141. |
58. | Wang J, Shen D, Xia G, et al. Differential protein structural disturbances and suppression of assembly partners produced by nonsense GABRG2 epilepsy mutations: implications for disease phenotypic heterogeneity. Sci Rep, 2016, 6: 35294. |
59. | Huang X, Tian M, Hernandez CC, et al. The GABRG2 nonsense mutation, Q40X, associated with Dravet syndrome activated NMD and generated a truncated subunit that was partially rescued by aminoglycoside-induced stop codon read-through. Neurobiol Dis, 2012, 48(1): 115-123. |
60. | Hirose S. A new paradigm of channelopathy in epilepsy syndromes: intracellular trafficking abnormality of channel molecules. Epilepsy Res, 2006, 70(Suppl 1): S206-217. |
61. | Ishii A, Kanaumi T, Sohda M, et al. Association of nonsense mutation in GABRG2 with abnormal trafficking of GABAA receptors in severe epilepsy. Epilepsy Res, 2014, 108(3): 420-432. |
62. | Sun H, Zhang Y, Liang J, et al. SCN1A, SCN1B, and GABRG2 gene mutation analysis in Chinese families with generalized epilepsy with febrile seizures plus. J Hum Genet, 2008, 53(8): 769-774. |
63. | 孙慧慧, 张月华, 刘晓燕, 等. 一个全面性癫痫伴热性惊厥附加症家系临床表型及GABRG2基因突变分析. 中华医学遗传学杂志, 2008, 25(6): 611-615. |
64. | Harkin LA, Bowser DN, Dibbens LM, et al. Truncation of the GABAA receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet, 2002, 70(2): 530-536. |
65. | Kang JQ, Shen W, Macdonald RL. Why does fever trigger febrile seizures? GABAA receptor gamma2 subunit mutations associated with idiopathic generalized epilepsies have temperature-dependent trafficking deficiencies. J Neurosci, 2006, 26(9): 2590-2597. |
66. | Kang JQ, Shen W, Macdonald RL. The GABRG2 mutation, Q351X, associated with generalized epilepsy with febrile seizures plus, has both loss of function and dominant-negative suppression. J Neurosci, 2009, 29(9): 2845-2856. |
67. | Kang JQ, Shen W, Lee M, et al. Slow degradation and aggregation in vitro of mutant GABAA receptor γ2(Q351X) subunits associated with epilepsy. J Neurosci, 2010, 30(41): 13895-13905. |
68. | Kang JQ, Shen W, Zhou C, et al. The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration. Nat Neurosci, 2015, 18(7): 988-996. |
69. | Warner TA, Shen W, Huang X, et al. Differential molecular and behavioural alterations in mouse models of GABRG2 haploinsufficiency versus dominant negative mutations associated with human epilepsy. Hum Mol Genet, 2016, 25(15): 3192-3207. |
70. | Zhang CQ, McMahon B, Dong H, et al. Molecular basis for and chemogenetic modulation of comorbidities in GABRG2-deficient epilepsies. Epilepsia, 2019, 60(6): 1137-1149. |
71. | Warner TA, Liu Z, Macdonald RL, et al. Heat induced temperature dysregulation and seizures in Dravet Syndrome/GEFS+ Gabrg2+/Q390X mice. Epilepsy Res, 2017, 134: 1-8. |
72. | Huang X, Zhou C, Tian M, et al. Overexpressing wild-type γ2 subunits rescued the seizure phenotype in Gabrg2+/Q390X Dravet syndrome mice. Epilepsia, 2017, 58(8): 1451-1461. |
73. | Warner TA, Smith NK, Kang JQ. The therapeutic effect of stiripentol in Gabrg2+/Q390X mice associated with epileptic encephalopathy. Epilepsy Res, 2019, 154: 8-12. |
74. | Kananura C, Haug K, Sander T, et al. A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol, 2002, 59(7): 1137-1141. |
75. | Tian M, Macdonald RL. The intronic GABRG2 mutation, IVS6+2T>G, associated with childhood absence epilepsy altered subunit mRNA intron splicing, activated nonsense-mediated decay, and produced a stable truncated γ2 subunit. J Neurosci, 2012, 32(17): 5937-5952. |
76. | Tian M, Mei D, Freri E, et al. Impaired surface αβγ GABA(A) receptor expression in familial epilepsy due to a GABRG2 frameshift mutation. Neurobiol Dis, 2013, 50: 135-141. |
77. | Dunn P, Albury CL, Maksemous N, et al. Next generation sequencing methods for diagnosis of epilepsy syndromes. Front Genet, 2018, 9: 20. |
78. | Hoelz H, Herdl C, Gerstl L, et al. Impact on clinical decision making of next-generation sequencing in pediatric epilepsy in a tertiary epilepsy referral center. Clin EEG Neurosci, 2019, 51(1): 61-69. |
79. | 中国医师协会医学遗传医师分会, 中华医学会儿科学分会内分泌遗传代谢学组, 中国医师协会青春期医学专业委员会临床遗传学组, 等. 全基因组测序在遗传病检测中的临床应用专家共识. 中华儿科杂志, 2019, 57(6): 419-423. |
80. | Durisic N, Keramidas A, Dixon CL, et al. SAHA (Vorinostat) corrects inhibitory synaptic deficits caused by missense epilepsy mutations to the GABAA receptor γ2 subunit. Front Mol Neurosci, 2018, 11: 89. |
81. | Li X, Guo S, Liu K, et al. GABRG2 deletion linked to genetic epilepsy with febrile seizures plus affects the expression of GABAA receptor subunits and other genes at different temperatures. Neuroscience, 2020, 438: 116-136. |
82. | 郭胜楠, 李信晓, 王峰, 等. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究. 中国生物工程杂志, 2020, 40(3): 9-20. |
83. | Li X, Guo S, Xu S, et al. Neocortex- and hippocampus-specific deletion of Gabrg2 causes temperature-dependent seizures in mice. Cell Death Dis, 2021, 12(6): 553. |
- 1. Scheffer IE, Berkovic SF. Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain, 1997, 120(Pt3): 479-490.
- 2. Engel JJr. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia, 2001, 42(6): 796-803.
- 3. Singh R, Scheffer IE, Crossland K, et al. Generalized epilepsy with febrile seizures plus: a common childhood-onset genetic epilepsy syndrome. Ann Neurol, 1999, 45(1): 75-81.
- 4. Lerche H, Weber YG, Baier H, et al. Generalized epilepsy with febrile seizures plus: further heterogeneity in a large family. Neurology, 2001, 57(7): 1191-1198.
- 5. Scheffer IE, Zhang YH, Jansen FE, et al. Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus? Brain Dev, 2009, 31(5): 394-400.
- 6. Scanlon A, Cook SS. Febrile seizures, genetic (generalized) epilepsy with febrile seizures plus, and Dravet's syndrome. J Spec Pediatr Nurs, 2010, 15(2): 154-159.
- 7. Lin H, Li J, Wang M, et al. Mutation screening of three Chinese families with genetic epilepsy with febrile seizures plus. Neurosci Lett, 2011, 500(2): 123-128.
- 8. Whiting PJ. The GABAA receptor gene family: new targets for therapeutic intervention. Neurochem Int, 1999, 34(5): 387-390.
- 9. Kang JQ, Macdonald RL. Molecular pathogenic basis for GABRG2 mutations associated with a spectrum of epilepsy syndromes, from generalized absence epilepsy to Dravet Syndrome. JAMA Neurol, 2016, 73(8): 1009-1016.
- 10. McKernan RM, Whiting PJ. Which GABAA receptor subtypes really occur in the brain? Trends Neurosci, 1996, 19(4): 139-143.
- 11. Haas KF, Macdonald RL. GABAA receptor subunit gamma2 and delta subtypes confer unique kinetic properties on recombinant GABAA receptor currents in mouse fibroblasts. J Physiol, 1999, 514(Pt1): 27-45.
- 12. Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58(4): 512-521.
- 13. Fisher RS, Cross JH, French JA, et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58(4): 522-530.
- 14. Berg AT, Berkovic SF, Brodie MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia, 2010, 51(4): 676-685.
- 15. Scheffer IE, Harkin LA, Grinton BE, et al. Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain, 2007, 130(Pt1): 100-109.
- 16. Camfield P, Camfield C. Febrile seizures and genetic epilepsy with febrile seizures plus GEFS+. Epileptic Disord, 2015, 17(2): 124-133.
- 17. Bouthour W, Leroy F, Emmanuelli C, et al. A human mutation in Gabrg2 associated with generalized epilepsy alters the membrane dynamics of GABAA receptors. Cereb Cortex, 2012, 22(7): 1542-1553.
- 18. Polizzi A, Incorpora G, Pavone P, et al. Generalised epilepsy with febrile seizures plus GEFS+: molecular analysis in a restricted area. Childs Nerv Syst, 2012, 28(1): 141-145.
- 19. Zhang YH, Burgess R, Malone JP, et al. Genetic epilepsy with febrile seizures plus: Refining the spectrum. Neurology, 2017, 89(12): 1210-1219.
- 20. Kivity S, Oliver KL, Afawi Z, et al. SCN1A clinical spectrum includes the self-limited focal epilepsies of childhood. Epilepsy Res, 2017, 131: 9-14.
- 21. Wallace RH, Wang DW, Singh R, et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nat Genet, 1998, 19(4): 366-70.
- 22. Escayg A, MacDonald BT, Meisler MH, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+. Nat Genet, 2000, 24(4): 343-345.
- 23. Sugawara T, Tsurubuchi Y, Agarwala KL, et al. A missense mutation of the Na+ channel alpha II subunit gene Na(v)1. 2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci USA, 2001, 98(11): 6384-6389.
- 24. Chou IC, Lin WD, Wang CH, et al. Interleukin (IL)-1beta, IL-1 receptor antagonist, IL-6, IL-8, IL-10, and tumor necrosis factor alpha gene polymorphisms in patients with febrile seizures. J Clin Lab Anal, 2010, 24(3): 154-159.
- 25. Wallace RH, Marini C, Petrou S, et al. Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet, 2001, 28(1): 49-52.
- 26. Bowser DN, Wagner DA, Czajkowski C, et al. Altered kinetics and benzodiazepine sensitivity of a GABAA receptor subunit mutation [γ2(R43Q)] found in human epilepsy. Proc Natl Acad Sci USA, 2002, 99(23): 15170-15175.
- 27. Nicolazzo JA, Steuten JA, Charman SA, et al. Brain uptake of diazepam and phenytoin in a genetic animal model of absence epilepsy. Clin Exp Pharmacol Physiol, 2010, 37(5-6): 647-649.
- 28. Sancar F, Czajkowski C. A GABAA receptor mutation linked to human epilepsy (γ2R43Q) impairs cell surface expression of αβγ receptors. J Biol Chem, 2004, 279(45): 47034-47039.
- 29. Kang JQ, Macdonald RL. The GABAA receptor γ2 subunit R43Q mutation linked to childhood absence epilepsy and febrile seizures causes retention of α1β2γ2S receptors in the endoplasmic reticulum. J Neurosci, 2004, 24(40): 8672-8677.
- 30. Hales TG, Tang H, Bollan KA, et al. The epilepsy mutation, γ2(R43Q) disrupts a highly conserved inter-subunit contact site, perturbing the biogenesis of GABAA receptors. Mol Cell Neurosci, 2005, 29(1): 120-127.
- 31. Tan HO, Reid CA, Single FN, et al. Reduced cortical inhibition in a mouse model of familial childhood absence epilepsy. Proc Natl Acad Sci USA, 2007, 104(44): 17536-17541.
- 32. Witsch J, Golkowski D, Hahn TT, et al. Cortical alterations in a model for absence epilepsy and febrile seizures: in vivo findings in mice carrying a human GABA(A)R gamma2 subunit mutation. Neurobiol Dis, 2015, 77: 62-70.
- 33. Chaumont S, André C, Perrais D, et al. Agonist-dependent endocytosis of γ-aminobutyric acid type A (GABAA) receptors revealed by a γ2(R43Q) epilepsy mutation. J Biol Chem, 2013, 288(39): 28254-65.
- 34. Chiu C, Reid CA, Tan HO, et al. Developmental impact of a familial GABAA receptor epilepsy mutation. Ann Neurol, 2008, 64(3): 284-293.
- 35. Richards KL, Kurniawan ND, Yang Z, et al. Hippocampal volume and cell density changes in a mouse model of human genetic epilepsy. Neurology, 2013, 80(13): 1240-1246.
- 36. Wimmer VC, Li MY, Berkovic SF, et al. Cortical microarchitecture changes in genetic epilepsy. Neurology, 2015, 84(13): 1308-1316.
- 37. Currie SP, Luz LL, Booker SA, et al. Reduced local input to fast-spiking interneurons in the somatosensory cortex in the GABAA γ2 R43Q mouse model of absence epilepsy. Epilepsia, 2017, 58(4): 597-607.
- 38. Audenaert D, Schwartz E, Claeys KG, et al. A novel GABRG2 mutation associated with febrile seizures. Neurology, 2006, 67(4): 687-690.
- 39. Baulac S, Huberfeld G, Gourfinkel-An I, et al. First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nat Genet, 2001, 28(1): 46-48.
- 40. Bianchi MT, Macdonald RL. Agonist trapping by GABAA receptor channels. J Neurosci, 2001, 21(23): 9083-9091.
- 41. Bianchi MT, Song L, Zhang H, et al. Two different mechanisms of disinhibition produced by GABAA receptor mutations linked to epilepsy in humans. J Neurosci, 2002, 22(13): 5321-5327.
- 42. Macdonald RL, Bianchi MT, Feng H. Mutations linked to generalized epilepsy in humans reduce GABAA receptor current. Exp Neurol, 2003, 184(Suppl 1): 58-67.
- 43. Eugène E, Depienne C, Baulac S, et al. GABAA receptor γ2 subunit mutations linked to human epileptic syndromes differentially affect phasic and tonic inhibition. J Neurosci, 2007, 27(51): 14108-14116.
- 44. Xiumin Wang, Meichun Xu, Lizhong Du. Association analysis of γ2 subunit of gamma-aminobutyric acid (GABA) type A receptor and voltage-gated sodium channel type II alpha-polypeptide gene mutation in southern Chinese children with febrile seizures. J Child Neurol, 2007, 22(6): 714-719.
- 45. Huang X, Hernandez CC, Hu N, et al. Three epilepsy-associated GABRG2 missense mutations at the γ+/β- interface disrupt GABAA receptor assembly and trafficking by similar mechanisms but to different extents. Neurobiol Dis, 2014, 68: 167-179.
- 46. Lachance-Touchette P, Brown P, Meloche C, et al. Novel α1 and γ2 GABAA receptor subunit mutations in families with idiopathic generalized epilepsy. Eur J Neurosci, 2011, 34(2): 237-249.
- 47. Todd E, Gurba KN, Botzolakis EJ, et al. GABAA receptor biogenesis is impaired by the γ2 subunit febrile seizure-associated mutation, GABRG2(R177G). Neurobiol Dis, 2014, 69: 215-224.
- 48. Shi X, Huang MC, Ishii A, et al. Mutational analysis of GABRG2 in a Japanese cohort with childhood epilepsies. J Hum Genet, 2010, 55(6): 375-378.
- 49. Migita K, Yamada J, Nikaido Y, et al. Properties of a novel GABAA receptor γ2 subunit mutation associated with seizures. J Pharmacol Sci, 2013, 121(1): 84-87.
- 50. Shen D, Hernandez CC, Shen W, et ak. De novo GABRG2 mutations associated with epileptic encephalopathies. Brain, 2017, 140(1): 49-67.
- 51. Reinthaler EM, Dejanovic B, Lal D, et al. Rare variants in γ-aminobutyric acid type A receptor genes in rolandic epilepsy and related syndromes. Ann Neurol, 2015, 77(6): 972-986.
- 52. Absalom NL, Ahring PK, Liao VW, et al. Functional genomics of epilepsy-associated mutations in the GABAA receptor subunits reveal that one mutation impairs function and two are catastrophic. J Biol Chem, 2019, 294(15): 6157-6171.
- 53. Zou F, McWalter K, Schmidt L, et al. Expanding the phenotypic spectrum of GABRG2 variants: a recurrent GABRG2 missense variant associated with a severe phenotype. J Neurogenet, 2017, 31(1-2): 30-36.
- 54. Komulainen-Ebrahim J, Schreiber JM, Kangas SM, et al. Novel variants and phenotypes widen the phenotypic spectrum of GABRG2-related disorders. Seizure, 2019, 69: 99-104.
- 55. Hernandez CC, Kong W, Hu N, et al. Altered channel conductance states and gating of GABAA receptors by a pore mutation linked to Dravet syndrome. eNeuro, 2017, 4(1): 025116.
- 56. Boillot M, Morin-Brureau M, Picard F, et al. Novel GABRG2 mutations cause familial febrile seizures. Neurol Genet, 2015, 1(4): e35.
- 57. Johnston AJ, Kang JQ, Shen W, et al. A novel GABRG2 mutation, p. R136*, in a family with GEFS+ and extended phenotypes. Neurobiol Dis, 2014, 64: 131-141.
- 58. Wang J, Shen D, Xia G, et al. Differential protein structural disturbances and suppression of assembly partners produced by nonsense GABRG2 epilepsy mutations: implications for disease phenotypic heterogeneity. Sci Rep, 2016, 6: 35294.
- 59. Huang X, Tian M, Hernandez CC, et al. The GABRG2 nonsense mutation, Q40X, associated with Dravet syndrome activated NMD and generated a truncated subunit that was partially rescued by aminoglycoside-induced stop codon read-through. Neurobiol Dis, 2012, 48(1): 115-123.
- 60. Hirose S. A new paradigm of channelopathy in epilepsy syndromes: intracellular trafficking abnormality of channel molecules. Epilepsy Res, 2006, 70(Suppl 1): S206-217.
- 61. Ishii A, Kanaumi T, Sohda M, et al. Association of nonsense mutation in GABRG2 with abnormal trafficking of GABAA receptors in severe epilepsy. Epilepsy Res, 2014, 108(3): 420-432.
- 62. Sun H, Zhang Y, Liang J, et al. SCN1A, SCN1B, and GABRG2 gene mutation analysis in Chinese families with generalized epilepsy with febrile seizures plus. J Hum Genet, 2008, 53(8): 769-774.
- 63. 孙慧慧, 张月华, 刘晓燕, 等. 一个全面性癫痫伴热性惊厥附加症家系临床表型及GABRG2基因突变分析. 中华医学遗传学杂志, 2008, 25(6): 611-615.
- 64. Harkin LA, Bowser DN, Dibbens LM, et al. Truncation of the GABAA receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet, 2002, 70(2): 530-536.
- 65. Kang JQ, Shen W, Macdonald RL. Why does fever trigger febrile seizures? GABAA receptor gamma2 subunit mutations associated with idiopathic generalized epilepsies have temperature-dependent trafficking deficiencies. J Neurosci, 2006, 26(9): 2590-2597.
- 66. Kang JQ, Shen W, Macdonald RL. The GABRG2 mutation, Q351X, associated with generalized epilepsy with febrile seizures plus, has both loss of function and dominant-negative suppression. J Neurosci, 2009, 29(9): 2845-2856.
- 67. Kang JQ, Shen W, Lee M, et al. Slow degradation and aggregation in vitro of mutant GABAA receptor γ2(Q351X) subunits associated with epilepsy. J Neurosci, 2010, 30(41): 13895-13905.
- 68. Kang JQ, Shen W, Zhou C, et al. The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration. Nat Neurosci, 2015, 18(7): 988-996.
- 69. Warner TA, Shen W, Huang X, et al. Differential molecular and behavioural alterations in mouse models of GABRG2 haploinsufficiency versus dominant negative mutations associated with human epilepsy. Hum Mol Genet, 2016, 25(15): 3192-3207.
- 70. Zhang CQ, McMahon B, Dong H, et al. Molecular basis for and chemogenetic modulation of comorbidities in GABRG2-deficient epilepsies. Epilepsia, 2019, 60(6): 1137-1149.
- 71. Warner TA, Liu Z, Macdonald RL, et al. Heat induced temperature dysregulation and seizures in Dravet Syndrome/GEFS+ Gabrg2+/Q390X mice. Epilepsy Res, 2017, 134: 1-8.
- 72. Huang X, Zhou C, Tian M, et al. Overexpressing wild-type γ2 subunits rescued the seizure phenotype in Gabrg2+/Q390X Dravet syndrome mice. Epilepsia, 2017, 58(8): 1451-1461.
- 73. Warner TA, Smith NK, Kang JQ. The therapeutic effect of stiripentol in Gabrg2+/Q390X mice associated with epileptic encephalopathy. Epilepsy Res, 2019, 154: 8-12.
- 74. Kananura C, Haug K, Sander T, et al. A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol, 2002, 59(7): 1137-1141.
- 75. Tian M, Macdonald RL. The intronic GABRG2 mutation, IVS6+2T>G, associated with childhood absence epilepsy altered subunit mRNA intron splicing, activated nonsense-mediated decay, and produced a stable truncated γ2 subunit. J Neurosci, 2012, 32(17): 5937-5952.
- 76. Tian M, Mei D, Freri E, et al. Impaired surface αβγ GABA(A) receptor expression in familial epilepsy due to a GABRG2 frameshift mutation. Neurobiol Dis, 2013, 50: 135-141.
- 77. Dunn P, Albury CL, Maksemous N, et al. Next generation sequencing methods for diagnosis of epilepsy syndromes. Front Genet, 2018, 9: 20.
- 78. Hoelz H, Herdl C, Gerstl L, et al. Impact on clinical decision making of next-generation sequencing in pediatric epilepsy in a tertiary epilepsy referral center. Clin EEG Neurosci, 2019, 51(1): 61-69.
- 79. 中国医师协会医学遗传医师分会, 中华医学会儿科学分会内分泌遗传代谢学组, 中国医师协会青春期医学专业委员会临床遗传学组, 等. 全基因组测序在遗传病检测中的临床应用专家共识. 中华儿科杂志, 2019, 57(6): 419-423.
- 80. Durisic N, Keramidas A, Dixon CL, et al. SAHA (Vorinostat) corrects inhibitory synaptic deficits caused by missense epilepsy mutations to the GABAA receptor γ2 subunit. Front Mol Neurosci, 2018, 11: 89.
- 81. Li X, Guo S, Liu K, et al. GABRG2 deletion linked to genetic epilepsy with febrile seizures plus affects the expression of GABAA receptor subunits and other genes at different temperatures. Neuroscience, 2020, 438: 116-136.
- 82. 郭胜楠, 李信晓, 王峰, 等. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究. 中国生物工程杂志, 2020, 40(3): 9-20.
- 83. Li X, Guo S, Xu S, et al. Neocortex- and hippocampus-specific deletion of Gabrg2 causes temperature-dependent seizures in mice. Cell Death Dis, 2021, 12(6): 553.