1. |
Vulto-van Silfhout AT, Rajamanickam S, Jensik PJ, et al. Mutations affecting the SAND domain of DEAF1 cause intellectual disability with severe speech impairment and behavioral problems. Am J Hum Genet, 2014, 94 (5): 649-661.
|
2. |
Veraksa A, Kennison J, McGinnis W. DEAF-1 function is essential for the early embryonic development of Drosophila. Genesis, 2002, 33 (2): 67-76.
|
3. |
Nabais Sá MJ, Jensik PJ, McGee SR, et al. De novo and biallelic DEAF1 variants cause a phenotypic spectrum. Genet Med, 2019, 21 (9): 2059-2069.
|
4. |
Reed DE, Huang XM, Wohlschlegel JA, et al. DEAF-1 regulates immunity gene expression in Drosophila. Proc Natl Acad Sci U S A, 2008, 105 (24): 8351-8356.
|
5. |
Hahm K, Sum EY, Fujiwara Y, et al. Defective neural tube closure and anteroposterior patterning in mice lacking the LIM protein LMO4 or its interacting partner Deaf-1. Mol Cell Biol, 2004, 24 (5): 2074-2082.
|
6. |
Yip L, Su L, Sheng D, et al. DEAF1 isoforms control the expression of genes encoding peripheral tissue antigens in the pancreatic lymph nodes during type 1 diabetes. Nat Immunol, 2009, 10 (9): 1026-1033.
|
7. |
Jans LA, Riedel WJ, Markus CR, et al. Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry, 2007, 12 (6): 522-543.
|
8. |
Manne U, Gary BD, Oelschlager DK, et al. Altered subcellular localization of suppressin, a novel inhibitor of cell-cycle entry, is an independent prognostic factor in colorectal adenocarcinomas. Clin Cancer Res, 2001, 7 (11): 3495-3503.
|
9. |
Czesak M, Le François B, Millar AM, et al. Increased serotonin-1A (5-HT1A) autoreceptor expression and reduced raphe serotonin levels in deformed epidermal autoregulatory factor-1 (Deaf-1) gene knock-out mice. J Biol Chem, 2012, 287 (9): 6615-6627.
|
10. |
Wenger AM, Guturu H, Bernstein JA, et al. Systematic reanalysis of clinical exome data yields additional diagnoses: implications for providers. Genet Med, 2017, 19 (2): 209-214.
|
11. |
Berger SI, Ciccone C, Simon KL, et al. Exome analysis of Smith-Magenis-like syndrome cohort identifies de novo likely pathogenic variants. Hum Genet, 2017, 136 (4): 409-420.
|
12. |
Chen L, Jensik PJ, Alaimo JT, et al. Functional analysis of novel DEAF1 variants identified through clinical exome sequencing expands DEAF1-associated neurodevelopmental disorder (DAND) phenotype. Hum Mutat, 2017, 38 (12): 1774-1785.
|
13. |
Li SJ, Yu SS, Luo HY, et al. Two de novo variations identified by massively parallel sequencing in 13 Chinese families with children diagnosed with autism spectrum disorder. Clin Chim Acta, 2018, 479: 144-147.
|
14. |
Faqeih EA, Al-Owain M, Colak D, et al. Novel homozygous DEAF1 variant suspected in causing white matter disease, intellectual disability, and microcephaly. Am J Med Genet A, 2014, 164A (6): 1565-1570.
|
15. |
Rajab A, Schuelke M, Gill E, et al. Recessive DEAF1 mutation associates with autism, intellectual disability, basal ganglia dysfunction and epilepsy. J Med Genet, 2015, 52 (9): 607-611.
|
16. |
Gund C, Powis Z, Alcaraz W, et al. Identification of a syndrome comprising microcephaly and intellectual disability but not white matter disease associated with a homozygous c. 676C>T p. R226W DEAF1 mutation. Am J Med Genet A, 2016, 170A (5): 1330-1332.
|
17. |
Sharma P, Gambhir PS, Phadke SR, et al. Expanding the phenotype in autosomal dominant mental retardation-24: a novel variation in DEAF1 gene. Clin Dysmorphol, 2019, 28 (2): 94-97.
|
18. |
Chen S, Deng X, Xiong J, et al. De novo variants of DEAF1 cause intellectual disability in six Chinese patients. Clin Chim Acta, 2021, 518: 17-21.
|
19. |
Bodunova N, Vorontsova M, Khatkov I, et al. A unique observation of a patient with vulto-van silfhout-de vries syndrome. Diagnostics (Basel), 2022, 12 (8): 1887.
|