- 1. Department of Neurology, People's Hospital of Ganzi Tibetan Autonomous Prefecture, Kangding 626000, China;
- 2. Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China;
Epilepsy is a common neurological disorder that affect patients' cognitive function and their mental health, imposing a huge burden on families and society. There are approximately 50 million epilepsy patients worldwide, with a prevalence rate of 4‰~7‰ in China, including about 6 million active epilepsy patients. Although scientists have been devoted to the research and exploration of epilepsy, the causes and pathological mechanisms of epilepsy are still poorly understood. The effectiveness of anti-seizure drugs is limited, and more effective methods is needed. With the deepening of microbiological research, many studies have found significant differences in the composition of the intestinal microbiota of epilepsy patients compared to healthy individuals. Analysis of the intestinal microbiota of epilepsy patients through sequencing has shown significantly lower abundances of Bacteroidetes and Firmicutes compared to the normal population. Many related clinical studies have found that adopting a ketogenic diet, taking probiotics orally, using antibiotics, or fecal microbiota transplantation (FMT) can effectively control epilepsy by normalizing the intestinal microbiota. Various studies suggest a possible connection between the intestinal microbiota and epilepsy, recognizing that the intestinal microbiota can have an impact on the central nervous system. As a result, gut-brain axisis gradually recognized by scientists. Therefore, the role of the intestinal microbiota in epilepsy is gradually being recognized, and recent clinical studies have confirmed that supplementing probiotics can effectively reduce seizure frequency and improve comorbidities, which may become a new method for treating epilepsy.
Citation: YUAN Haili, HE Yongqiao, DENG Yongyi, MU Jie. Research Progress of probiotics in the treatment of Epilepsy. Journal of Epilepsy, 2024, 10(3): 240-248. doi: 10.7507/2096-0247.202403001 Copy
1. | World Health Organisation, Epilepsy: key facts.https://www. who.int/news-room/fact-sheets/detail/epilepsy (accessed 7 Fer 2023). |
2. | Ding D, Zhou D, Sander JW, et al. Epilepsy in China: major progress in the past two decades. Lancet Neurol, 2021, 20(4): 316-326. |
3. | Kobow K, Blümcke I. Epigenetics in epilepsy. Neurosci Lett, 2018, 667(3): 11568. |
4. | Thijs RD, Surges R, O’Brien TJ, et al. Epilepsy in adults. Lancet, 2019, 393: 689-701. |
5. | Balestrini S, Arzimanoglou A, Blümcke I, et al. The aetiologies of epilepsy. Epileptic Disord, 2021, 23(1): 1-16. |
6. | Jennum P, Gyllenborg J, Kjellberg J. The social and economic consequences of epilepsy: a controlled national study. Epilepsia, 2011, 52(5): 949-956. |
7. | Steriade C, Britton J, Dale RC, et al. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune-associated epilepsy: conceptual definitions. Epilepsia, 2020, 61(7): 1341-1351. |
8. | He Z, Cui BT, Zhang T, et al. Fecal microbiota transplantation cured epilepsy in a case with Crohn’s disease: the first report. World J Gastroenterol, 2017, 23(19): 3565-3568. |
9. | Xie G, Zhou Q, Qiu CZ, et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J Gastroenterol, 2017, 23(23): 6164-6171. |
10. | Peng A, Qiu X, Lai W, et al. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res, 2018, 147(11): 102-107. |
11. | Şafak B, Altunan B, Topcu B, et al. The gut microbiome in epilepsy. Microb Pathog, 2020, 139: 103853. |
12. | Holmes M, Flaminio Z, Vardhan M, et al. Cross talk between drug-resistant epilepsy and the gut microbiome. Epilepsia, 2020, 61(11): 2619-2628. |
13. | Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol, 2009, 9(5): 313-23. |
14. | Kamada N, Seo SU, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol, 2013, 13(5): 321-35. |
15. | Kundu S, Nayak S, Rakshit D, et al. The microbiome-gut-brain axis in epilepsy: pharmacotherapeutic target from bench evidence for potential bedside applications. Eur J Neurol, 2023, 30(11): 3557-3567. |
16. | Tamburini S, Shen N, Wu HC, et al. The microbiome in early life: implications for health outcomes. Nat Med, 2016, 22: 713–722. |
17. | Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 2019, 10,7(1): 14. |
18. | Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J, 2017, 16,474(11): 1823-1836. |
19. | Khanna S, Tosh PK. A clinician's primer on the role of the microbiome in human health and disease. Mayo Clin Proc, 2014, 89: 107-114. |
20. | Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe, 2015, 10,17(6): 852. |
21. | O'Toole PW, Jeffery IB. Gut microbiota and aging. Science, 2015, 350(6265): 1214-5. |
22. | Pineiro M, Stanton C. Probiotic bacteria: legislative framework-- requirements to evidence basis. J Nutr, 2007, 137(Suppl 2): 850-853. |
23. | 魏长浩. 益生菌及其应用研究进展. 乳品科学与技术, 2018, 41(1): 26-32. |
24. | Saad N, Delattre, C, Urdaci, M, et al. An overview of the last advances in probiotic and prebiotic field. Lebensm-wiss Technol, 2013, 50(1): 1-16. |
25. | Eor JY, Son YJ, Kim JY, et al. Neuroprotective effect of both synbiotics and ketogenic diet in a pentylenetetrazol-induced acute seizure murine model. Epilepsy Res, 2021, 17(4): 106668. |
26. | Sochocka M, Donskow-Łysoniewska K, Diniz BS, et al. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease-a critical review. Mol Neurobiol, 2019, 56(3): 1841-1851. |
27. | Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 2016, 167(6): 1469-1480. |
28. | Dahlin M, Prast-Nielsen S. The gut microbiome and epilepsy. EBioMedicine, 2019, 44: 741-746. |
29. | Lindefeldt M, Eng A, Darban H, et al. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes, 2019, 5: 1-13. |
30. | Zhang Y, Zhou S, Zhou Y. et al. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res, 2018, 145: 163–168. |
31. | Gong, X, Liu, X, Chen, C, et al. Alteration of gut microbiota in patients with epilepsy and the potential index as a biomarker. Front Microbiol, 2020, 18,11: 517797. |
32. | Gilbert JA, Blaser MJ, Caporaso JG, et al. Current understanding of the human microbiome. Nat Med, 2018, 24: 392-400. |
33. | Long-Smith C, O’Riordan KJ, Clarke G, et al. Microbiota-gut-brain axis: new therapeutic oppor tunities. Annu Rev Pharmacol Toxicol, 2020, 60: 477-502. |
34. | Martin, CR, Osadchiy, V, Kalani, A, et al. The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol, 2018, 6(2): 133-148. |
35. | Fülling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: what happens in vagus. Neuron, 2019, 101: 998-1002. |
36. | Agirman G, Hsiao EY. Snapshot: The microbiota-gut-brain axis. Cell, 2021, 184(9): 2524-2524. |
37. | Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol, 2020, 19(4): 241-255. |
38. | Ambrosini YM, Borcherding D, Kanthasamy A, et al. The gut-brain axis in neurodegenerative diseases and relevance of the canine model: a review. Front Aging Neurosci, 2019, 11: 130. |
39. | Abdel-Haq R, Schlachetzki JCM, Glass CK, et al. Microbiome-microglia connections via the gut-brain axis. J Exp Med, 2018, 216(1): 41-59. |
40. | Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: new roles for the synaptic stripper. Neuron, 2013, 77(1): 10-18. |
41. | De Caro C, Iannone LF, Citraro R, et al. Can we ‘seize’ the gut microbiota to treat epilepsy? Neurosci Biobehav Rev, 2019, 107: 750–764. |
42. | De Caro C, Leo A, Nesci V, et al. Intestinal inflammation increases convulsant activity and reduces antiepileptic drug efficacy in a mouse model of epilepsy. Sci Rep, 2019, 27,9(1): 13983. |
43. | Wang BH, Hou Q, Lu YQ, et al. Ketogenic diet attenuates neuronal injury via autophagy and mitochondrial pathways in pentylenetetrazol-kindled seizures. Brain Res, 2018, 1,1678: 106-115. |
44. | Sarkar A, Lehto SM, Harty S, et al. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci, 2016, 39: 763-781. |
45. | Kennedy PJ, Cryan JF, Dinan TG, et al. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology, 2017, 112: 399-412. |
46. | Clarke G, Stilling RM, Kennedy PJ, et al. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol, 2014, 28: 1221-1238. |
47. | Ding M, Lang Y, Shu H, et al. Microbiota-gut-brain axis and epilepsy: a review on mechanisms and potential therapeutics. Front Immunol, 2021, 11,12: 742449. |
48. | Sanz P, Garcia-Gimeno MA. Reactive glia inflammatory signaling pathways and epilepsy. Int J Mol Sci, 2020, 8,21(11): 4096. |
49. | Khakh BS, Sofroniew MV. Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci, 2015, 18(7): 942-52. |
50. | Ginhoux, F, Lim, S, Hoeffel, G, et al. Origin and differentiation of microglia. Front Cell Neurosci, 2013, 7: 45. |
51. | Rothhammer V, Borucki DM, Tjon EC, et al. Microglial control of astrocytes in response to microbial metabolites. Nature, 2018, 557(7707): 724-728. |
52. | Rothhammer V, Mascanfroni ID, Bunse L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med, 2016, 22(6): 586-597. |
53. | Yang L, Zhou Y, Jia H, et al. Affective immunology: the crosstalk between microglia and astrocytes plays key role? Front Immunol, 2020, 11: 1818. |
54. | Moradi K, Ashraf-Ganjouei A, Tavolinejad H, et al. The interplay between gut microbiota and autism spectrum disorders: a focus on immunological pathways. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 106: 110091. |
55. | de Theije CG, Wu J, da Silva, SL, et al. Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur J Pharmacol, 2011, 668(Suppl 1): 70-80. |
56. | Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci, 2015, 18(7): 965-77. |
57. | Obrenovich MEM. Leaky Gut, Leaky brain? Microorganisms, 2018, 18, 6(4): 107. |
58. | Logsdon AF, Erickson MA, Rhea EM, et al. Gut reactions: how the blood-brain barrier connects the microbiome and the brain. Exp Biol Med, 2017, 243(2): 159-165. |
59. | McCusker RH, Kelley KW. Immune-neural connections: how the immune system's response to infectious agents influences behavior. J Exp Biol, 2013, 1, 216(Pt 1): 84-98. |
60. | Welcome MO. Gut microbiota disorder, gut epithelial and blood-brain barrier dysfunctions in etiopathogenesis of dementia: molecular mechanisms and signaling pathways. Neuromol Med, 2019, 21(3): 205-226. |
61. | Laman JD, 't Hart BA, Power C, et al. Bacterial peptidoglycan as a driver of chronic brain inflammation. Trends Mol Med, 2020, 26(7): 670-682. |
62. | Chow J, Mazmanian SK. Getting the bugs out of the immune system: do bacterial microbiota "fix" intestinal T cell responses? Cell Host Microbe, 2009, 5(1): 8-12. |
63. | Ivanov II, Frutos Rde L, Manel N, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe, 2008, 4(4): 337-349. |
64. | Gaman A, Kuo B. Neuromodulatory processes of the brain-gut axis. Neuromodulation, 2008, 11(4): 249-259. |
65. | Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci, 2007, 10(9): 1116-1124. |
66. | Kaelberer MM, Buchanan KL, Klein ME, et al. A gut-brain neural circuit for nutrient sensory transduction. Science, 2018, 21,361(6408): 5236. |
67. | Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res, 2018, 1693 (Pt B): 128-133. |
68. | Werner FM, Coveñas R. Classical neurotransmitters and neuropeptides involved in generalized epilepsy in a multi-neurotransmitter system: How to improve the antiepileptic effect? Epilepsy Behav, 2015, 71 (Pt B): 124-129. |
69. | Takanaga H, Ohtsuki S, Hosoya Ki, et al. GAT2/BGT-1 as a system responsible for the transport of gamma-aminobutyric acid at the mouse blood-brain barrier. J Cerebr Blood F Met, 2001, 21(10): 1232-9. |
70. | Lu Y, Zhang Z, Tong L, et al. Mechanisms underlying the promotion of 5-hydroxytryptamine secretion in enterochromaffin cells of constipation mice by Bifidobacterium and Lactobacillus. Neurogastroent Motil, 2021, 33(7): e14082. |
71. | Reigstad CS, Salmonson CE, Rainey JF, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. Faseb J, 2014, 29(4): 1395-1403. |
72. | Specchio LM, Iudice A, Specchio N, et al. Citalopram as treatment of depression in patients with epilepsy. Clin Neuropharmacol, 2004, 27(3): 133-136. |
73. | Jurgens CW, Boese SJ, King JD, et al. Adrenergic receptor modulation of hippocampal CA3 network activity. Epilepsy Res, 2005, 66(1-3): 117-128. |
74. | den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res, 2013, 54(9): 2325-2340. |
75. | De Caro C, Iannone LF, Citraro R, et al. Can we 'seize' the gut microbiota to treat epilepsy? Neurosci Biobehav Rev, 2019, 107: 750-764. |
76. | De Caro C, Leo A, Nesci V, et al. Intestinal inflammation increases convulsant activity and reduces antiepileptic drug efficacy in a mouse model of epilepsy. Sci Rep, 2019, 9(1): 13983. |
77. | Li D, Bai X, Jiang Y, et al. Butyrate alleviates PTZ-induced mitochondrial dysfunction, oxidative stress and neuron apoptosis in mice via Keap1/Nrf2/HO-1 pathway. Brin Res Bull, 2020, 168: 25-35. |
78. | Cheng Y, Mai Q, Zeng X, et al. Propionate relieves pentylenetetrazol-induced seizures, consequent mitochondrial disruption, neuron necrosis and neurological deficits in mice. Biochem Pharmacol, 2019, 169: 113607. |
79. | Cano-López I, González-Bono E. Cortisol levels and seizures in adults with epilepsy: a systematic review. Neurosci Biobehav Rev, 2019, 103: 216-229. |
80. | Miller WL. The hypothalamic-pituitary-adrenal axis: a brief history. Horm Res Paediat, 2018, 89(4): 212-223. |
81. | de Weerth C. Do bacteria shape our development? crosstalk between intestinal microbiota and HPA axis. Neurosci Biobehav Rev, 2017, 83: 458-471. |
82. | Vodička M, Ergang P, Hrnčíř T, et al. Microbiota affects the expression of genes involved in HPA axis regulation and local metabolism of glucocorticoids in chronic psychosocial stress. Brain Behav Immun, 2018, 73: 615-624. |
83. | Bagheri S, Heydari A, Alinaghipour A, et al. Effect of probiotic supplementation on seizure activity and cognitive performance in PTZ-induced chemical kindling. Epilepsy Behav, 2019, 95: 43-50. |
84. | Tahmasebi S, Oryan S, Mohajerani HR, et al. Probiotics and Nigella sativa extract supplementation improved behavioral and electrophysiological effects of PTZ-induced chemical kindling in rats. Epilepsy Behav, 2020, 104(PtA): 106897. |
85. | Eor JY, Tan PL, Son YJ, et al. Gut microbiota modulation by both Lactobacillus fermentum MSK 408 and ketogenic diet in a murine model of pentylenetetrazole-induced acute seizure. Epilepsy Res, 2021, 169: 106506. |
86. | Aygun H, Akin AT, Kızılaslan N, et al. Electrophysiological, histopathological, and biochemical evaluation of the protective effect of probiotic supplementation against pentylenetetrazole-induced seizures in rats. Eur J Neurol, 2023, 30(11): 3540-3550. |
87. | Gómez-Eguílaz M, Ramón-Trapero JL, Pérez-Martínez L, et al. The beneficial effect of probiotics as a supplementary treatment in-resistant epilepsy: a pilot study. Benef Microbes, 2018, 9(6): 875-881. |
88. | 邓宇虹, 林楚慧, 操德智. 脆弱拟杆菌(BF839)辅助治疗难治性癫痫有效性的初步临床研究. 癫痫杂志, 2021, 7(4): 288-295. |
89. | 林楚慧, 曾婷, 吴倩仪, 等. 脆弱拟杆菌839治疗新诊断“可能的自身免疫相关癫痫”的疗效. 癫痫杂志, 2022, 8(4): 298-304. |
- 1. World Health Organisation, Epilepsy: key facts.https://www. who.int/news-room/fact-sheets/detail/epilepsy (accessed 7 Fer 2023).
- 2. Ding D, Zhou D, Sander JW, et al. Epilepsy in China: major progress in the past two decades. Lancet Neurol, 2021, 20(4): 316-326.
- 3. Kobow K, Blümcke I. Epigenetics in epilepsy. Neurosci Lett, 2018, 667(3): 11568.
- 4. Thijs RD, Surges R, O’Brien TJ, et al. Epilepsy in adults. Lancet, 2019, 393: 689-701.
- 5. Balestrini S, Arzimanoglou A, Blümcke I, et al. The aetiologies of epilepsy. Epileptic Disord, 2021, 23(1): 1-16.
- 6. Jennum P, Gyllenborg J, Kjellberg J. The social and economic consequences of epilepsy: a controlled national study. Epilepsia, 2011, 52(5): 949-956.
- 7. Steriade C, Britton J, Dale RC, et al. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune-associated epilepsy: conceptual definitions. Epilepsia, 2020, 61(7): 1341-1351.
- 8. He Z, Cui BT, Zhang T, et al. Fecal microbiota transplantation cured epilepsy in a case with Crohn’s disease: the first report. World J Gastroenterol, 2017, 23(19): 3565-3568.
- 9. Xie G, Zhou Q, Qiu CZ, et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J Gastroenterol, 2017, 23(23): 6164-6171.
- 10. Peng A, Qiu X, Lai W, et al. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res, 2018, 147(11): 102-107.
- 11. Şafak B, Altunan B, Topcu B, et al. The gut microbiome in epilepsy. Microb Pathog, 2020, 139: 103853.
- 12. Holmes M, Flaminio Z, Vardhan M, et al. Cross talk between drug-resistant epilepsy and the gut microbiome. Epilepsia, 2020, 61(11): 2619-2628.
- 13. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol, 2009, 9(5): 313-23.
- 14. Kamada N, Seo SU, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol, 2013, 13(5): 321-35.
- 15. Kundu S, Nayak S, Rakshit D, et al. The microbiome-gut-brain axis in epilepsy: pharmacotherapeutic target from bench evidence for potential bedside applications. Eur J Neurol, 2023, 30(11): 3557-3567.
- 16. Tamburini S, Shen N, Wu HC, et al. The microbiome in early life: implications for health outcomes. Nat Med, 2016, 22: 713–722.
- 17. Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 2019, 10,7(1): 14.
- 18. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J, 2017, 16,474(11): 1823-1836.
- 19. Khanna S, Tosh PK. A clinician's primer on the role of the microbiome in human health and disease. Mayo Clin Proc, 2014, 89: 107-114.
- 20. Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe, 2015, 10,17(6): 852.
- 21. O'Toole PW, Jeffery IB. Gut microbiota and aging. Science, 2015, 350(6265): 1214-5.
- 22. Pineiro M, Stanton C. Probiotic bacteria: legislative framework-- requirements to evidence basis. J Nutr, 2007, 137(Suppl 2): 850-853.
- 23. 魏长浩. 益生菌及其应用研究进展. 乳品科学与技术, 2018, 41(1): 26-32.
- 24. Saad N, Delattre, C, Urdaci, M, et al. An overview of the last advances in probiotic and prebiotic field. Lebensm-wiss Technol, 2013, 50(1): 1-16.
- 25. Eor JY, Son YJ, Kim JY, et al. Neuroprotective effect of both synbiotics and ketogenic diet in a pentylenetetrazol-induced acute seizure murine model. Epilepsy Res, 2021, 17(4): 106668.
- 26. Sochocka M, Donskow-Łysoniewska K, Diniz BS, et al. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease-a critical review. Mol Neurobiol, 2019, 56(3): 1841-1851.
- 27. Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 2016, 167(6): 1469-1480.
- 28. Dahlin M, Prast-Nielsen S. The gut microbiome and epilepsy. EBioMedicine, 2019, 44: 741-746.
- 29. Lindefeldt M, Eng A, Darban H, et al. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes, 2019, 5: 1-13.
- 30. Zhang Y, Zhou S, Zhou Y. et al. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res, 2018, 145: 163–168.
- 31. Gong, X, Liu, X, Chen, C, et al. Alteration of gut microbiota in patients with epilepsy and the potential index as a biomarker. Front Microbiol, 2020, 18,11: 517797.
- 32. Gilbert JA, Blaser MJ, Caporaso JG, et al. Current understanding of the human microbiome. Nat Med, 2018, 24: 392-400.
- 33. Long-Smith C, O’Riordan KJ, Clarke G, et al. Microbiota-gut-brain axis: new therapeutic oppor tunities. Annu Rev Pharmacol Toxicol, 2020, 60: 477-502.
- 34. Martin, CR, Osadchiy, V, Kalani, A, et al. The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol, 2018, 6(2): 133-148.
- 35. Fülling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: what happens in vagus. Neuron, 2019, 101: 998-1002.
- 36. Agirman G, Hsiao EY. Snapshot: The microbiota-gut-brain axis. Cell, 2021, 184(9): 2524-2524.
- 37. Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol, 2020, 19(4): 241-255.
- 38. Ambrosini YM, Borcherding D, Kanthasamy A, et al. The gut-brain axis in neurodegenerative diseases and relevance of the canine model: a review. Front Aging Neurosci, 2019, 11: 130.
- 39. Abdel-Haq R, Schlachetzki JCM, Glass CK, et al. Microbiome-microglia connections via the gut-brain axis. J Exp Med, 2018, 216(1): 41-59.
- 40. Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: new roles for the synaptic stripper. Neuron, 2013, 77(1): 10-18.
- 41. De Caro C, Iannone LF, Citraro R, et al. Can we ‘seize’ the gut microbiota to treat epilepsy? Neurosci Biobehav Rev, 2019, 107: 750–764.
- 42. De Caro C, Leo A, Nesci V, et al. Intestinal inflammation increases convulsant activity and reduces antiepileptic drug efficacy in a mouse model of epilepsy. Sci Rep, 2019, 27,9(1): 13983.
- 43. Wang BH, Hou Q, Lu YQ, et al. Ketogenic diet attenuates neuronal injury via autophagy and mitochondrial pathways in pentylenetetrazol-kindled seizures. Brain Res, 2018, 1,1678: 106-115.
- 44. Sarkar A, Lehto SM, Harty S, et al. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci, 2016, 39: 763-781.
- 45. Kennedy PJ, Cryan JF, Dinan TG, et al. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology, 2017, 112: 399-412.
- 46. Clarke G, Stilling RM, Kennedy PJ, et al. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol, 2014, 28: 1221-1238.
- 47. Ding M, Lang Y, Shu H, et al. Microbiota-gut-brain axis and epilepsy: a review on mechanisms and potential therapeutics. Front Immunol, 2021, 11,12: 742449.
- 48. Sanz P, Garcia-Gimeno MA. Reactive glia inflammatory signaling pathways and epilepsy. Int J Mol Sci, 2020, 8,21(11): 4096.
- 49. Khakh BS, Sofroniew MV. Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci, 2015, 18(7): 942-52.
- 50. Ginhoux, F, Lim, S, Hoeffel, G, et al. Origin and differentiation of microglia. Front Cell Neurosci, 2013, 7: 45.
- 51. Rothhammer V, Borucki DM, Tjon EC, et al. Microglial control of astrocytes in response to microbial metabolites. Nature, 2018, 557(7707): 724-728.
- 52. Rothhammer V, Mascanfroni ID, Bunse L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med, 2016, 22(6): 586-597.
- 53. Yang L, Zhou Y, Jia H, et al. Affective immunology: the crosstalk between microglia and astrocytes plays key role? Front Immunol, 2020, 11: 1818.
- 54. Moradi K, Ashraf-Ganjouei A, Tavolinejad H, et al. The interplay between gut microbiota and autism spectrum disorders: a focus on immunological pathways. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 106: 110091.
- 55. de Theije CG, Wu J, da Silva, SL, et al. Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur J Pharmacol, 2011, 668(Suppl 1): 70-80.
- 56. Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci, 2015, 18(7): 965-77.
- 57. Obrenovich MEM. Leaky Gut, Leaky brain? Microorganisms, 2018, 18, 6(4): 107.
- 58. Logsdon AF, Erickson MA, Rhea EM, et al. Gut reactions: how the blood-brain barrier connects the microbiome and the brain. Exp Biol Med, 2017, 243(2): 159-165.
- 59. McCusker RH, Kelley KW. Immune-neural connections: how the immune system's response to infectious agents influences behavior. J Exp Biol, 2013, 1, 216(Pt 1): 84-98.
- 60. Welcome MO. Gut microbiota disorder, gut epithelial and blood-brain barrier dysfunctions in etiopathogenesis of dementia: molecular mechanisms and signaling pathways. Neuromol Med, 2019, 21(3): 205-226.
- 61. Laman JD, 't Hart BA, Power C, et al. Bacterial peptidoglycan as a driver of chronic brain inflammation. Trends Mol Med, 2020, 26(7): 670-682.
- 62. Chow J, Mazmanian SK. Getting the bugs out of the immune system: do bacterial microbiota "fix" intestinal T cell responses? Cell Host Microbe, 2009, 5(1): 8-12.
- 63. Ivanov II, Frutos Rde L, Manel N, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe, 2008, 4(4): 337-349.
- 64. Gaman A, Kuo B. Neuromodulatory processes of the brain-gut axis. Neuromodulation, 2008, 11(4): 249-259.
- 65. Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci, 2007, 10(9): 1116-1124.
- 66. Kaelberer MM, Buchanan KL, Klein ME, et al. A gut-brain neural circuit for nutrient sensory transduction. Science, 2018, 21,361(6408): 5236.
- 67. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res, 2018, 1693 (Pt B): 128-133.
- 68. Werner FM, Coveñas R. Classical neurotransmitters and neuropeptides involved in generalized epilepsy in a multi-neurotransmitter system: How to improve the antiepileptic effect? Epilepsy Behav, 2015, 71 (Pt B): 124-129.
- 69. Takanaga H, Ohtsuki S, Hosoya Ki, et al. GAT2/BGT-1 as a system responsible for the transport of gamma-aminobutyric acid at the mouse blood-brain barrier. J Cerebr Blood F Met, 2001, 21(10): 1232-9.
- 70. Lu Y, Zhang Z, Tong L, et al. Mechanisms underlying the promotion of 5-hydroxytryptamine secretion in enterochromaffin cells of constipation mice by Bifidobacterium and Lactobacillus. Neurogastroent Motil, 2021, 33(7): e14082.
- 71. Reigstad CS, Salmonson CE, Rainey JF, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. Faseb J, 2014, 29(4): 1395-1403.
- 72. Specchio LM, Iudice A, Specchio N, et al. Citalopram as treatment of depression in patients with epilepsy. Clin Neuropharmacol, 2004, 27(3): 133-136.
- 73. Jurgens CW, Boese SJ, King JD, et al. Adrenergic receptor modulation of hippocampal CA3 network activity. Epilepsy Res, 2005, 66(1-3): 117-128.
- 74. den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res, 2013, 54(9): 2325-2340.
- 75. De Caro C, Iannone LF, Citraro R, et al. Can we 'seize' the gut microbiota to treat epilepsy? Neurosci Biobehav Rev, 2019, 107: 750-764.
- 76. De Caro C, Leo A, Nesci V, et al. Intestinal inflammation increases convulsant activity and reduces antiepileptic drug efficacy in a mouse model of epilepsy. Sci Rep, 2019, 9(1): 13983.
- 77. Li D, Bai X, Jiang Y, et al. Butyrate alleviates PTZ-induced mitochondrial dysfunction, oxidative stress and neuron apoptosis in mice via Keap1/Nrf2/HO-1 pathway. Brin Res Bull, 2020, 168: 25-35.
- 78. Cheng Y, Mai Q, Zeng X, et al. Propionate relieves pentylenetetrazol-induced seizures, consequent mitochondrial disruption, neuron necrosis and neurological deficits in mice. Biochem Pharmacol, 2019, 169: 113607.
- 79. Cano-López I, González-Bono E. Cortisol levels and seizures in adults with epilepsy: a systematic review. Neurosci Biobehav Rev, 2019, 103: 216-229.
- 80. Miller WL. The hypothalamic-pituitary-adrenal axis: a brief history. Horm Res Paediat, 2018, 89(4): 212-223.
- 81. de Weerth C. Do bacteria shape our development? crosstalk between intestinal microbiota and HPA axis. Neurosci Biobehav Rev, 2017, 83: 458-471.
- 82. Vodička M, Ergang P, Hrnčíř T, et al. Microbiota affects the expression of genes involved in HPA axis regulation and local metabolism of glucocorticoids in chronic psychosocial stress. Brain Behav Immun, 2018, 73: 615-624.
- 83. Bagheri S, Heydari A, Alinaghipour A, et al. Effect of probiotic supplementation on seizure activity and cognitive performance in PTZ-induced chemical kindling. Epilepsy Behav, 2019, 95: 43-50.
- 84. Tahmasebi S, Oryan S, Mohajerani HR, et al. Probiotics and Nigella sativa extract supplementation improved behavioral and electrophysiological effects of PTZ-induced chemical kindling in rats. Epilepsy Behav, 2020, 104(PtA): 106897.
- 85. Eor JY, Tan PL, Son YJ, et al. Gut microbiota modulation by both Lactobacillus fermentum MSK 408 and ketogenic diet in a murine model of pentylenetetrazole-induced acute seizure. Epilepsy Res, 2021, 169: 106506.
- 86. Aygun H, Akin AT, Kızılaslan N, et al. Electrophysiological, histopathological, and biochemical evaluation of the protective effect of probiotic supplementation against pentylenetetrazole-induced seizures in rats. Eur J Neurol, 2023, 30(11): 3540-3550.
- 87. Gómez-Eguílaz M, Ramón-Trapero JL, Pérez-Martínez L, et al. The beneficial effect of probiotics as a supplementary treatment in-resistant epilepsy: a pilot study. Benef Microbes, 2018, 9(6): 875-881.
- 88. 邓宇虹, 林楚慧, 操德智. 脆弱拟杆菌(BF839)辅助治疗难治性癫痫有效性的初步临床研究. 癫痫杂志, 2021, 7(4): 288-295.
- 89. 林楚慧, 曾婷, 吴倩仪, 等. 脆弱拟杆菌839治疗新诊断“可能的自身免疫相关癫痫”的疗效. 癫痫杂志, 2022, 8(4): 298-304.