1. |
Huang Y, Li Y, Pan H, et al. Global, regional, and national burden of neurological disorders in 204 countries and territories worldwide. J Glob Health, 2023, 13: 04160.
|
2. |
Ding D, Zhou D, Sander JW, et al. Epilepsy in China: major progress in the past two decades. Lancet Neurol, 2021, 20(4): 316-326.
|
3. |
Thijs RD, Surges R, O'Brien TJ, et al. Epilepsy in adults. Lancet, 2019, 393(10172): 689-701.
|
4. |
Pong AW, Xu KJ, Klein P. Recent advances in pharmacotherapy for epilepsy. Curr Opin Neurol, 2023, 36(2): 77-85.
|
5. |
Paudel YN, Shaikh MF, Shah S, et al. Role of inflammation in epilepsy and neurobehavioral comorbidities: implication for therapy. Eur J Pharmacol, 2018, 837: 145-155.
|
6. |
Soltani Khaboushan A, Yazdanpanah N, Rezaei N. Neuroinflammation and proinflammatory cytokines in epileptogenesis. Mol Neurobiol, 2022, 59(3): 1724-1743.
|
7. |
Zimmer LA, Ennis M, Shipley MT. Soman-induced seizures rapidly activate astrocytes and microglia in discrete brain regions. J Comp Neurol, 1997, 378(4): 482-492.
|
8. |
Saraste M, Matilainen M, Vuorimaa A, et al. Association of serum neurofilament light with microglial activation in multiple sclerosis. J Neurol Neurosurg Psychiatry, 2023, 94(9): 698-706.
|
9. |
Qin L, Xiao L, Zhu H, et al. Translocator protein (18 kDa) positron emission tomography imaging as a biomarker of neuroinflammation in epilepsy. Neurol Sci, 2024, Online ahead of print.
|
10. |
Costa B, Cavallini C, Da Pozzo E, et al. The anxiolytic etifoxine binds to TSPO Ro5-4864 binding site with long residence time showing a high neurosteroidogenic activity. ACS Chem Neurosci, 2017, 8(7): 1448-1454.
|
11. |
Rupprecht R, Papadopoulos V, Rammes G, et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov, 2010, 9(12): 971-988.
|
12. |
García-García L, Shiha AA, Fernández de la Rosa R, et al. Metyrapone prevents brain damage induced by status epilepticus in the rat lithium-pilocarpine model. Neuropharmacology, 2017, 123: 261-273.
|
13. |
Batarseh A, Papadopoulos V. Regulation of translocator protein 18 kDa (TSPO) expression in health and disease states. Mol Cell Endocrinol, 2010, 327(1-2): 1-12.
|
14. |
Gatliff J, East D, Crosby J, et al. TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control. Autophagy, 2014, 10(12): 2279-2296.
|
15. |
Bader S, Wolf L, Milenkovic VM, et al. Differential effects of TSPO ligands on mitochondrial function in mouse microglia cells. Psychoneuroendocrinology, 2019, 106: 65-76.
|
16. |
Gavish M, Veenman L. Regulation of mitochondrial, cellular, and organismal functions by TSPO. Adv Pharmacol, 2018, 82: 103-136.
|
17. |
Chung JY, Chen H, Midzak A, et al. Drug ligand-induced activation of translocator protein (TSPO) stimulates steroid production by aged brown Norway rat Leydig cells. Endocrinology, 2013, 154(6): 2156-2165.
|
18. |
Weidner LD, Kannan P, Mitsios N, et al. The expression of inflammatory markers and their potential influence on efflux transporters in drug-resistant mesial temporal lobe epilepsy tissue. Epilepsia, 2018, 59(8): 1507-1517.
|
19. |
Notter T, Schalbetter SM, Clifton NE, et al. Neuronal activity increases translocator protein (TSPO) levels. Mol Psychiatry, 2021, 26(6): 2025-2037.
|
20. |
Barron AM, Higuchi M, Hattori S, et al. Regulation of anxiety and depression by mitochondrial translocator protein-mediated steroidogenesis: the role of neurons. Mol Neurobiol, 2021, 58(2): 550-563.
|
21. |
Rupprecht R, Wetzel CH, Dorostkar M, et al. Translocator protein (18kDa) TSPO: a new diagnostic or therapeutic target for stress-related disorders? Mol Psychiatry, 2022, 27(7): 2918-2926.
|
22. |
Dupont AC, Largeau B, Santiago Ribeiro MJ, et al. Translocator protein-18 kDa (TSPO) positron emission tomography (PET) imaging and its clinical impact in neurodegenerative diseases. Int J Mol Sci, 2017, 18(4): 18040785.
|
23. |
Betlazar C, Middleton RJ, Banati R, et al. The Translocator protein (TSPO) in mitochondrial bioenergetics and immune processes. Cells, 2020, 9(2): 9020512.
|
24. |
Garland EF, Dennett O, Lau LC, et al. The mitochondrial protein TSPO in Alzheimer's disease: relation to the severity of AD pathology and the neuroinflammatory environment. J Neuroinflammation, 2023, 20(1): 186-201.
|
25. |
Conti E, Grana D, Angiulli F, et al. TSPO modulates oligomeric amyloid-β-induced monocyte chemotaxis: relevance for neuroinflammation in Alzheimer's disease. J Alzheimers Dis, 2023, 95(2): 549-559.
|
26. |
Airas L, Yong VW. Microglia in multiple sclerosis - pathogenesis and imaging. Curr Opin Neurol, 2022, 35(3): 299-306.
|
27. |
Dimitrova-Shumkovska J, Krstanoski L, Veenman L. Diagnostic and therapeutic potential of TSPO studies regarding neurodegenerative diseases, psychiatric disorders, alcohol use disorders, traumatic brain injury, and stroke: an update. Cells, 2020, 9(4): 9040870.
|
28. |
Gallus M, Roll W, Dik A, et al. Translational imaging of TSPO reveals pronounced innate inflammation in human and murine CD8 T cell-mediated limbic encephalitis. Sci Adv, 2023, 9(23): 7595.
|
29. |
Dickstein LP, Liow JS, Austermuehle A, et al. Neuroinflammation in neocortical epilepsy measured by PET imaging of translocator protein. Epilepsia, 2019, 60(6): 1248-1254.
|
30. |
Nutma E, Ceyzériat K, Amor S, et al. Cellular sources of TSPO expression in healthy and diseased brain. Eur J Nucl Med Mol Imaging, 2021, 49(1): 146-163.
|
31. |
Nozaki K, Ito H, Ohgidani M, et al. Antidepressant effect of the translocator protein antagonist ONO-2952 on mouse behaviors under chronic social defeat stress. Neuropharmacology, 2020, 162: 107835.
|
32. |
Nguyen DL, Wimberley C, Truillet C, et al. Longitudinal positron emission tomography imaging of glial cell activation in a mouse model of mesial temporal lobe epilepsy: Toward identification of optimal treatment windows. Epilepsia, 2018, 59(6): 1234-1244.
|
33. |
Bascuñana P, Gendron T, Sander K, et al. Ex vivo characterization of neuroinflammatory and neuroreceptor changes during epileptogenesis using candidate positron emission tomography biomarkers. Epilepsia, 2019, 60(11): 2325-2333.
|
34. |
Bertoglio D, Amhaoul H, Goossens J, et al. TSPO PET upregulation predicts epileptic phenotype at disease onset independently from chronic TSPO expression in a rat model of temporal lobe epilepsy. Neuroimage Clin, 2021, 31: 102701.
|
35. |
Dedeurwaerdere S, Callaghan PD, Pham T, et al. PET imaging of brain inflammation during early epileptogenesis in a rat model of temporal lobe epilepsy. EJNMMI Res, 2012, 2(1): 1-13.
|
36. |
Kaneko KI, Irie S, Mawatari A, et al. [(18)F]DPA-714 PET imaging for the quantitative evaluation of early spatiotemporal changes of neuroinflammation in rat brain following status epilepticus. Eur J Nucl Med Mol Imaging, 2022, 49(7): 2265-2275.
|
37. |
Gershen LD, Zanotti-Fregonara P, Dustin IH, et al. Neuroinflammation in temporal lobe epilepsy measured using positron emission tomographic imaging of translocator protein. JAMA Neurol, 2015, 72(8): 882-888.
|
38. |
Maroso M, Balosso S, Ravizza T, et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med, 2010, 16(4): 413-419.
|
39. |
Ravizza T, Vezzani A. Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system. Neuroscience, 2006, 137(1): 301-308.
|
40. |
Aronica E, Ravizza T, Zurolo E, et al. Astrocyte immune responses in epilepsy. Glia, 2012, 60(8): 1258-1268.
|
41. |
Zhou D, Ji L, Chen Y. TSPO Modulates IL-4-induced microglia/macrophage M2 polarization via PPAR-γ pathway. J Mol Neurosci, 2020, 70(4): 542-549.
|
42. |
Abraham J, Fox PD, Condello C, et al. Minocycline attenuates microglia activation and blocks the long-term epileptogenic effects of early-life seizures. Neurobiol Dis, 2012, 46(2): 425-430.
|
43. |
Wolf BJ, Brackhan M, Bascuñana P, et al. TSPO PET identifies different anti-inflammatory minocycline treatment response in two rodent models of epileptogenesis. Neurotherapeutics, 2020, 17(3): 1228-1238.
|
44. |
Bloms-Funke P, Bankstahl M, Bankstahl J, et al. The novel dual-mechanism Kv7 potassium channel/TSPO receptor activator GRT-X is more effective than the Kv7 channel opener retigabine in the 6-Hz refractory seizure mouse model. Neuropharmacology, 2022, 203: 108884.
|