- Epilepsy center, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China;
Epilepsy is a complex and widespread neurological disorder that has become a global public health issue. In recent years, significant progress has been made in the use of wearable devices for seizure monitoring, prediction, and treatment. This paper reviewed the applications of invasive and non-invasive wearable devices in seizure monitoring, such as subcutaneous EEG, ear-EEG, and multimodal sensors, highlighting their advantages in improving the accuracy of seizure recording. It also discussed the latest advances in the prediction and treatment of seizure using wearable devices.
Citation: MEI Aoxue, FU Cong, LV Kun, LUAN Guoming. Application and progress of wearable devices in epilepsy monitoring, prediction, and treatment. Journal of Epilepsy, 2024, 10(5): 417-425. doi: 10.7507/2096-0247.202408003 Copy
1. | Megiddo I, Colson A, Chisholm D, et al. Health and economic benefits of public financing of epilepsy treatment in India: an agent-based simulation model. Epilepsia, 2016, 57(3): 464-74. |
2. | Hoppe C, Feldmann M, Blachut B, et al. Novel techniques for automated seizure registration: patients' wants and needs. Epilepsy & Behavior, 2015, 52(Pt A): 1-7. |
3. | Jory C, Shankar R, Coker D, et al. Safe and sound? A systematic literature review of seizure detection methods for personal use. Seizure, 2016, 36: 4-15. |
4. | Patel AD, Moss R, Rust S W, et al. Patient-centered design criteria for wearable seizure detection devices. Epilepsy & Behavior, 2016, 64(Pt A): 116-121. |
5. | Schulze-Bonhage A, Sales F, Wagner K, et al. Views of patients with epilepsy on seizure prediction devices. Epilepsy & Behavior, 2010, 18(4): 388-396. |
6. | Tovar Quiroga DF, Britton JW, Wirrell EC. Patient and caregiver view on seizure detection devices: a survey study. Seizure, 2016, 41: 179-181. |
7. | Van de Vel A, Cuppens K, Bonroy B, et al. Non-EEG seizure detection systems and potential SUDEP prevention: State of the art: review and update. Seizure, 2016, 41: 141-153. |
8. | Van de Vel A, Smets K, Wouters K, et al. Automated non-EEG based seizure detection: Do users have a say? Epilepsy & Behavior, 2016, 62: 121-128. |
9. | Holst AG, Winkel BG, Risgaard B, et al. Epilepsy and risk of death and sudden unexpected death in the young: a nationwide study. Epilepsia, 2013, 54(9): 1613-1620. |
10. | Cendes F, Sakamoto AC, Spreafico R, et al. Epilepsies associated with hippocampal sclerosis. Acta Neuropathologica, 2014, 128(1): 21-37. |
11. | Stirling RE, Grayden DB, D'Souza W, et al. Forecasting seizure likelihood with wearable technology. Frontiers in Neurology, 2021, 12: 704060. |
12. | Elger CE, Hoppe C. Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. The Lancet Neurology, 2018, 17(3): 279-288. |
13. | Choi SA, Lim K, Baek H, et al. Impact of mobile health application on data collection and self-management of epilepsy. Epilepsy & Behavior, 2021, 119: 107982. |
14. | Hixson JD, Braverman L. Digital tools for epilepsy: opportunities and barriers. Epilepsy Research, 2020, 162: 106233. |
15. | Weisdorf S, Duun-Henriksen J, Kjeldsen MJ, et al. Ultra-long-term subcutaneous home monitoring of epilepsy-490 days of EEG from nine patients. Epilepsia, 2019, 60(11): 2204-2214. |
16. | Karakis I. Getting under the skin of seizure monitoring: a subcutaneous EEG tool to keep a tally over the long haul. Epilepsy Currents, 2023, 23(6): 351-353. |
17. | Duun-Henriksen J, Kjaer TW, Looney D, et al. EEG signal quality of a subcutaneous recording system compared to standard surface electrodes. Journal of Sensors, 2015, 2015(1): 341208. |
18. | Zibrandtsen IC, Kidmose P, Christensen CB, et al. Ear-EEG detects ictal and interictal abnormalities in focal and generalized epilepsy - a comparison with scalp EEG monitoring. Clinical Neurophysiology, 2017, 128(12): 2454-2461. |
19. | Gu Y, Cleeren E, Dan J, et al. Comparison between scalp EEG and behind-the-ear EEG for Development of a wearable seizure detection system for patients with focal epilepsy. Sensors (Basel, Switzerland), 2017, 18(1): 29. |
20. | Bleichner MG, Lundbeck M, Selisky M, et al. Exploring miniaturized EEG electrodes for brain-computer interfaces. An EEG you do not see? Physiological Reports, 2015, 3(4): e12362. |
21. | Debener S, Emkes R, De Vos M, et al. Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Scientific Reports, 2015, 5: 16743. |
22. | Japaridze G, Loeckx D, Buckinx T, et al. Automated detection of absence seizures using a wearable electroencephalographic device: a phase 3 validation study and feasibility of automated behavioral testing. Epilepsia, 2023, 64(Suppl 4): S40-S46. |
23. | El Atrache R, Tamilia E, Mohammadpour Touserkani F, et al. Photoplethysmography: a measure for the function of the autonomic nervous system in focal impaired awareness seizures. Epilepsia, 2020, 61(8): 1617-1626. |
24. | Wang R, Blackburn G, Desai M, et al. Accuracy of wrist-worn heart rate monitors. JAMA Cardiology, 2017, 2(1): 104-106. |
25. | Yamakawa T, Miyajima M, Fujiwara K, et al. Wearable epileptic seizure prediction system with machine-learning-based anomaly detection of heart rate variability. Sensors (Basel, Switzerland), 2020, 20(14): 3987. |
26. | Billeci L, Marino D, Insana L, et al. Patient-specific seizure prediction based on heart rate variability and recurrence quantification analysis. PloS One, 2018, 13(9): e0204339. |
27. | Zelano J, Beniczky S, Ryvlin P, et al. Report of the ILAE SUDEP Task Force on national recommendations and practices around the world regarding the use of wearable seizure detection devices: a global survey. Epilepsia Open, 2023, 8(4): 1271-1278. |
28. | Opeskin K, Berkovic SF. Risk factors for sudden unexpected death in epilepsy: a controlled prospective study based on coroners cases. Seizure, 2003, 12(7): 456-464. |
29. | Nei M, Ho RT, Abou-Khalil BW, et al. EEG and ECG in sudden unexplained death in epilepsy. Epilepsia, 2004, 45(4): 338-345. |
30. | Kanner A M. Peri-ictal cardiac and respiratory disturbances in epilepsy: incidental finding or culprit of SUDEP. Epilepsy currents, 2011, 11(1): 16-18. |
31. | Arends J, Thijs RD, Gutter T, et al. Multimodal nocturnal seizure detection in a residential care setting: a long-term prospective trial. Neurology, 2018, 91(21): e2010-e2019. |
32. | Lazeron RHC, Thijs RD, Arends J, et al. Multimodal nocturnal seizure detection: Do we need to adapt algorithms for children? Epilepsia Open, 2022, 7(3): 406-413. |
33. | Meritam P, Ryvlin P, Beniczky S. User-based evaluation of applicability and usability of a wearable accelerometer device for detecting bilateral tonic-clonic seizures: a field study. Epilepsia, 2018, 59(Suppl 1): 48-52. |
34. | Whitmire L, Voyles S, Cardenas D, et al. Diagnostic utility of continuous sEMG monitoring in a home setting - real-world use of the SPEAC® System (P4.5-012). Neurology, 92(Suppl 1): 15. |
35. | Regalia G, Onorati F, Lai M, et al. Multimodal wrist-worn devices for seizure detection and advancing research: focus on the empatica wristbands. Epilepsy Research, 2019, 153: 79-82. |
36. | Hofstra WA, de Weerd AW. The circadian rhythm and its interaction with human epilepsy: a review of literature. Sleep Medicine Reviews, 2009, 13(6): 413-420. |
37. | van Campen JS, Hompe EL, Jansen FE, et al. Cortisol fluctuations relate to interictal epileptiform discharges in stress sensitive epilepsy. Brain, 2016, 139(Pt 6): 1673-1679. |
38. | Wang ET, Chiang S, Cleboski S, et al. Seizure count forecasting to aid diagnostic testing in epilepsy. Epilepsia, 2022, 63(12): 3156-3167. |
39. | Jarosiewicz B, Morrell M. The RNS System: brain-responsive neurostimulation for the treatment of epilepsy. Expert Review of Medical Devices, 2021, 18(2): 129-138. |
40. | Ngadimon IW, Aledo-Serrano A, Arulsamy A, et al. An interplay between post-traumatic epilepsy and associated cognitive decline: a systematic review. Frontiers in Neurology, 2022, 13: 827571. |
41. | Jacobs J, Wu JY, Perucca P, et al. Removing high-frequency oscillations: a prospective multicenter study on seizure outcome. Neurology, 2018, 91(11): e1040-e1052. |
42. | Roehri N, Pizzo F, Lagarde S, et al. High-frequency oscillations are not better biomarkers of epileptogenic tissues than spikes. Annals of Neurology, 2018, 83(1): 84-97. |
43. | Behbahani S, Dabanloo NJ, Nasrabadi AM, et al. Pre-ictal heart rate variability assessment of epileptic seizures by means of linear and non-linear analyses. Anadolu Kardiyoloji Dergisi, 2013, 13(8): 797-803. |
44. | Jeppesen J, Fuglsang-Frederiksen A, Johansen P, et al. Seizure detection based on heart rate variability using a wearable electrocardiography device. Epilepsia, 2019, 60(10): 2105-2113. |
45. | Cogan D, Birjandtalab J, Nourani M, et al. Multi-biosignal analysis for epileptic seizure monitoring. International Journal of Neural Systems, 2017, 27(1): 1650031. |
46. | Mason F, Scarabello A, Taruffi L, et al. Heart rate variability as a tool for seizure prediction: a scoping review. Journal of Clinical Medicine, 2024, 13(3): 747. |
47. | Ghosh S, Sinha JK, Khan T, et al. Pharmacological and therapeutic approaches in the treatment of epilepsy. BioMedicines, 2021, 9(5): 300-304. |
48. | Löscher W, Schmidt D. Experimental and clinical evidence for loss of effect (tolerance) during prolonged treatment with antiepileptic drugs. Epilepsia, 2006, 47(8): 1253-1284. |
49. | Laxer KD, Trinka E, Hirsch LJ, et al. The consequences of refractory epilepsy and its treatment. Epilepsy & Behavior, 2014, 37: 59-70. |
50. | Duncan JS, Sander JW, Sisodiya S M, et al. Adult epilepsy. Lancet (London, England), 2006, 367(9516): 1087-1100. |
51. | Stevelink R, Koeleman BPC, Sander JW, et al. Refractory juvenile myoclonic epilepsy: a meta-analysis of prevalence and risk factors. European Journal of Neurology, 2019, 26(6): 856-864. |
52. | West S, Nevitt SJ, Cotton J, et al. Surgery for epilepsy. The Cochrane Database of Systematic Reviews, 2019, 6(6): Cd010541. |
53. | Jobst BC, Cascino GD. Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA, 2015, 313(3): 285-293. |
54. | Bell ML, Rao S, So EL, et al. Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI. Epilepsia, 2009, 50(9): 2053-2060. |
55. | Boon P, Vonck K, van Rijckevorsel K, et al. A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure, 2015, 32: 52-61. |
56. | Fisher RS, Afra P, Macken M, et al. Automatic vagus nerve stimulation triggered by ictal tachycardia: clinical outcomes and device performance--the U. S. E-37 trial. Neuromodulation, 2016, 19(2): 188-195. |
57. | Ventureyra EC. Transcutaneous vagus nerve stimulation for partial onset seizure therapy--a new concept. Child's Nervous System, 2000, 16(2): 101-102. |
58. | Rong P, Liu A, Zhang J, et al. An alternative therapy for drug-resistant epilepsy: transcutaneous auricular vagus nerve stimulation. Chinese Medical Journal, 2014, 127(2): 300-304. |
59. | He W, Jing X, Wang X, et al. Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial. Epilepsy & Behavior, 2013, 28(3): 343-346. |
60. | Aihua L, Lu S, Liping L, et al. A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy. Epilepsy & Behavior, 2014, 39: 105-110. |
61. | Barbella G, Cocco I, Freri E, et al. Transcutaneous vagal nerve stimulatio (t-VNS): An adjunctive treatment option for refractory epilepsy. Seizure, 2018, 60: 115-119. |
62. | Liu A, Rong P, Gong L, et al. Efficacy and safety of treatment with transcutaneous vagus nerve stimulation in 17 patients with refractory epilepsy evaluated by electroencephalogram, seizure frequency, and quality of life. Medical Science Monitor, 2018, 24: 8439-8448. |
63. | Stefan H, Kreiselmeyer G, Kerling F, et al. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia, 2012, 53(7): e115-e118. |
64. | Ben-Menachem E, Mañon-Espaillat R, Ristanovic R, et al. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. First International Vagus Nerve Stimulation Study Group. Epilepsia, 1994, 35(3): 616-626. |
65. | Amar AP, DeGiorgio CM, Tarver WB, et al. Long-term multicenter experience with vagus nerve stimulation for intractable partial seizures: results of the XE5 trial. Stereotactic and Functional Neurosurgery, 1999, 73(1-4): 104-108. |
66. | DeGiorgio CM, Schachter SC, Handforth A, et al. Prospective long-term study of vagus nerve stimulation for the treatment of refractory seizures. Epilepsia, 2000, 41(9): 1195-1200. |
67. | Handforth A, DeGiorgio CM, Schachter SC, et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology, 1998, 51(1): 48-55. |
68. | van Westrhenen A, Lazeron RHC, van Dijk J P, et al. Multimodal nocturnal seizure detection in children with epilepsy: A prospective, multicenter, long-term, in-home trial. Epilepsia, 2023, 64(8): 2137-2152. |
69. | Böttcher S, Bruno E, Epitashvili N, et al. Intra- and inter-subject perspectives on the detection of focal onset motor seizures in epilepsy patients. Sensors (Basel, Switzerland), 2022, 22(9): 3318. |
70. | You S, Hwan Cho B, Shon YM, et al. Semi-supervised automatic seizure detection using personalized anomaly detecting variational autoencoder with behind-the-ear EEG. Computer Methods and Programs in Biomedicine, 2022, 213: 106542. |
71. | Nasseri M, Pal Attia T, Joseph B, et al. Non-invasive wearable seizure detection using long-short-term memory networks with transfer learning. Journal of Neural Engineering, 2021, 18(5): 056017. |
72. | Swinnen L, Chatzichristos C, Jansen K, et al. Accurate detection of typical absence seizures in adults and children using a two-channel electroencephalographic wearable behind the ears. Epilepsia, 2021, 62(11): 2741-2752. |
73. | Böttcher S, Bruno E, Manyakov N V, et al. Detecting tonic-clonic seizures in multimodal biosignal data from wearables: methodology design and validation. JMIR mHealth and uHealth, 2021, 9(11): e27674. |
74. | Vandecasteele K, De Cooman T, Chatzichristos C, et al. The power of ECG in multimodal patient-specific seizure monitoring: added value to an EEG-based detector using limited channels. Epilepsia, 2021, 62(10): 2333-2343. |
75. | Baumgartner C, Whitmire LE, Voyles SR, et al. Using sEMG to identify seizure semiology of motor seizures. Seizure, 2021, 86: 52-59. |
76. | Frankel MA, Lehmkuhle MJ, Spitz MC, et al. Wearable reduced-channel eeg system for remote seizure monitoring. Frontiers in Neurology, 2021, 12: 728484. |
77. | De Cooman T, Vandecasteele K, Varon C, et al. Personalizing heart rate-based seizure detection using supervised svm transfer learning. Frontiers in Neurology, 2020, 11: 145. |
78. | Jeppesen J, Fuglsang-Frederiksen A, Johansen P, et al. Seizure detection using heart rate variability: a prospective validation study. Epilepsia, 2020, 61(Suppl 1): s41-s46. |
79. | You S, Cho BH, Yook S, et al. Unsupervised automatic seizure detection for focal-onset seizures recorded with behind-the-ear EEG using an anomaly-detecting generative adversarial network. Computer Methods and Programs in Biomedicine, 2020, 193: 105472. |
80. | Johansson D, Ohlsson F, Krýsl D, et al. Tonic-clonic seizure detection using accelerometry-based wearable sensors: a prospective, video-EEG controlled study. Seizure, 2019, 65: 48-54. |
81. | Forooghifar F, Aminifar A, Cammoun L, et al. A self-aware epilepsy monitoring system for real-time epileptic seizure detection. Mobile Networks and Applications, 2022, 27: 677-690. |
82. | Beniczky S, Conradsen I, Henning O, et al. Automated real-time detection of tonic-clonic seizures using a wearable EMG device. Neurology, 2018, 90(5): e428-e434. |
83. | Onorati F, Regalia G, Caborni C, et al. Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors. Epilepsia, 2017, 58(11): 1870-1879. |
84. | van Andel J, Ungureanu C, Arends J, et al. Multimodal, automated detection of nocturnal motor seizures at home: Is a reliable seizure detector feasible? Epilepsia Open, 2017, 2(4): 424-431. |
85. | Vandecasteele K, De Cooman T, Gu Y, et al. Automated epileptic seizure detection based on wearable ECG and PPG in a hospital environment. Sensors (Basel, Switzerland), 2017, 17(10): 2338. |
86. | Velez M, Fisher RS, Bartlett V, et al. Tracking generalized tonic-clonic seizures with a wrist accelerometer linked to an online database. Seizure, 2016, 39: 13-18. |
87. | Milosevic M, Van de Vel A, Bonroy B, et al. Automated detection of tonic-clonic seizures using 3-D accelerometry and surface electromyography in pediatric patients. IEEE Journal of Biomedical and Health Informatics, 2016, 20(5): 1333-1341. |
88. | Szabó C, Morgan LC, Karkar KM, et al. Electromyography-based seizure detector: Preliminary results comparing a generalized tonic-clonic seizure detection algorithm to video-EEG recordings. Epilepsia, 2015, 56(9): 1432-1437. |
89. | Patterson AL, Mudigoudar B, Fulton S, et al. Smartwatch by smartmonitor: assessment of seizure detection efficacy for various seizure types in children, a large prospective single-center study. Pediatric Neurology, 2015, 53(4): 309-311. |
90. | Jeppesen J, Beniczky S, Johansen P, et al. Exploring the capability of wireless near infrared spectroscopy as a portable seizure detection device for epilepsy patients. Seizure, 2015, 26: 43-48. |
91. | Halford JJ, Sperling MR, Nair DR, et al. Detection of generalized tonic-clonic seizures using surface electromyographic monitoring. Epilepsia, 2017, 58(11): 1861-1869. |
92. | Beniczky S, Polster T, Kjaer TW, et al. Detection of generalized tonic-clonic seizures by a wireless wrist accelerometer: a prospective, multicenter study. Epilepsia, 2013, 54(4): e58-61. |
93. | Conradsen I, Beniczky S, Hoppe K, et al. Automated algorithm for generalized tonic-clonic epileptic seizure onset detection based on sEMG zero-crossing rate. IEEE Transactions on Bio-Medical Engineering, 2012, 59(2): 579-585. |
94. | Poh MZ, Loddenkemper T, Reinsberger C, et al. Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor. Epilepsia, 2012, 53(5): e93-97. |
95. | Kramer U, Kipervasser S, Shlitner A, et al. A novel portable seizure detection alarm system: preliminary results. Journal of Clinical Neurophysiology, 2011, 28(1): 36-38. |
- 1. Megiddo I, Colson A, Chisholm D, et al. Health and economic benefits of public financing of epilepsy treatment in India: an agent-based simulation model. Epilepsia, 2016, 57(3): 464-74.
- 2. Hoppe C, Feldmann M, Blachut B, et al. Novel techniques for automated seizure registration: patients' wants and needs. Epilepsy & Behavior, 2015, 52(Pt A): 1-7.
- 3. Jory C, Shankar R, Coker D, et al. Safe and sound? A systematic literature review of seizure detection methods for personal use. Seizure, 2016, 36: 4-15.
- 4. Patel AD, Moss R, Rust S W, et al. Patient-centered design criteria for wearable seizure detection devices. Epilepsy & Behavior, 2016, 64(Pt A): 116-121.
- 5. Schulze-Bonhage A, Sales F, Wagner K, et al. Views of patients with epilepsy on seizure prediction devices. Epilepsy & Behavior, 2010, 18(4): 388-396.
- 6. Tovar Quiroga DF, Britton JW, Wirrell EC. Patient and caregiver view on seizure detection devices: a survey study. Seizure, 2016, 41: 179-181.
- 7. Van de Vel A, Cuppens K, Bonroy B, et al. Non-EEG seizure detection systems and potential SUDEP prevention: State of the art: review and update. Seizure, 2016, 41: 141-153.
- 8. Van de Vel A, Smets K, Wouters K, et al. Automated non-EEG based seizure detection: Do users have a say? Epilepsy & Behavior, 2016, 62: 121-128.
- 9. Holst AG, Winkel BG, Risgaard B, et al. Epilepsy and risk of death and sudden unexpected death in the young: a nationwide study. Epilepsia, 2013, 54(9): 1613-1620.
- 10. Cendes F, Sakamoto AC, Spreafico R, et al. Epilepsies associated with hippocampal sclerosis. Acta Neuropathologica, 2014, 128(1): 21-37.
- 11. Stirling RE, Grayden DB, D'Souza W, et al. Forecasting seizure likelihood with wearable technology. Frontiers in Neurology, 2021, 12: 704060.
- 12. Elger CE, Hoppe C. Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. The Lancet Neurology, 2018, 17(3): 279-288.
- 13. Choi SA, Lim K, Baek H, et al. Impact of mobile health application on data collection and self-management of epilepsy. Epilepsy & Behavior, 2021, 119: 107982.
- 14. Hixson JD, Braverman L. Digital tools for epilepsy: opportunities and barriers. Epilepsy Research, 2020, 162: 106233.
- 15. Weisdorf S, Duun-Henriksen J, Kjeldsen MJ, et al. Ultra-long-term subcutaneous home monitoring of epilepsy-490 days of EEG from nine patients. Epilepsia, 2019, 60(11): 2204-2214.
- 16. Karakis I. Getting under the skin of seizure monitoring: a subcutaneous EEG tool to keep a tally over the long haul. Epilepsy Currents, 2023, 23(6): 351-353.
- 17. Duun-Henriksen J, Kjaer TW, Looney D, et al. EEG signal quality of a subcutaneous recording system compared to standard surface electrodes. Journal of Sensors, 2015, 2015(1): 341208.
- 18. Zibrandtsen IC, Kidmose P, Christensen CB, et al. Ear-EEG detects ictal and interictal abnormalities in focal and generalized epilepsy - a comparison with scalp EEG monitoring. Clinical Neurophysiology, 2017, 128(12): 2454-2461.
- 19. Gu Y, Cleeren E, Dan J, et al. Comparison between scalp EEG and behind-the-ear EEG for Development of a wearable seizure detection system for patients with focal epilepsy. Sensors (Basel, Switzerland), 2017, 18(1): 29.
- 20. Bleichner MG, Lundbeck M, Selisky M, et al. Exploring miniaturized EEG electrodes for brain-computer interfaces. An EEG you do not see? Physiological Reports, 2015, 3(4): e12362.
- 21. Debener S, Emkes R, De Vos M, et al. Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Scientific Reports, 2015, 5: 16743.
- 22. Japaridze G, Loeckx D, Buckinx T, et al. Automated detection of absence seizures using a wearable electroencephalographic device: a phase 3 validation study and feasibility of automated behavioral testing. Epilepsia, 2023, 64(Suppl 4): S40-S46.
- 23. El Atrache R, Tamilia E, Mohammadpour Touserkani F, et al. Photoplethysmography: a measure for the function of the autonomic nervous system in focal impaired awareness seizures. Epilepsia, 2020, 61(8): 1617-1626.
- 24. Wang R, Blackburn G, Desai M, et al. Accuracy of wrist-worn heart rate monitors. JAMA Cardiology, 2017, 2(1): 104-106.
- 25. Yamakawa T, Miyajima M, Fujiwara K, et al. Wearable epileptic seizure prediction system with machine-learning-based anomaly detection of heart rate variability. Sensors (Basel, Switzerland), 2020, 20(14): 3987.
- 26. Billeci L, Marino D, Insana L, et al. Patient-specific seizure prediction based on heart rate variability and recurrence quantification analysis. PloS One, 2018, 13(9): e0204339.
- 27. Zelano J, Beniczky S, Ryvlin P, et al. Report of the ILAE SUDEP Task Force on national recommendations and practices around the world regarding the use of wearable seizure detection devices: a global survey. Epilepsia Open, 2023, 8(4): 1271-1278.
- 28. Opeskin K, Berkovic SF. Risk factors for sudden unexpected death in epilepsy: a controlled prospective study based on coroners cases. Seizure, 2003, 12(7): 456-464.
- 29. Nei M, Ho RT, Abou-Khalil BW, et al. EEG and ECG in sudden unexplained death in epilepsy. Epilepsia, 2004, 45(4): 338-345.
- 30. Kanner A M. Peri-ictal cardiac and respiratory disturbances in epilepsy: incidental finding or culprit of SUDEP. Epilepsy currents, 2011, 11(1): 16-18.
- 31. Arends J, Thijs RD, Gutter T, et al. Multimodal nocturnal seizure detection in a residential care setting: a long-term prospective trial. Neurology, 2018, 91(21): e2010-e2019.
- 32. Lazeron RHC, Thijs RD, Arends J, et al. Multimodal nocturnal seizure detection: Do we need to adapt algorithms for children? Epilepsia Open, 2022, 7(3): 406-413.
- 33. Meritam P, Ryvlin P, Beniczky S. User-based evaluation of applicability and usability of a wearable accelerometer device for detecting bilateral tonic-clonic seizures: a field study. Epilepsia, 2018, 59(Suppl 1): 48-52.
- 34. Whitmire L, Voyles S, Cardenas D, et al. Diagnostic utility of continuous sEMG monitoring in a home setting - real-world use of the SPEAC® System (P4.5-012). Neurology, 92(Suppl 1): 15.
- 35. Regalia G, Onorati F, Lai M, et al. Multimodal wrist-worn devices for seizure detection and advancing research: focus on the empatica wristbands. Epilepsy Research, 2019, 153: 79-82.
- 36. Hofstra WA, de Weerd AW. The circadian rhythm and its interaction with human epilepsy: a review of literature. Sleep Medicine Reviews, 2009, 13(6): 413-420.
- 37. van Campen JS, Hompe EL, Jansen FE, et al. Cortisol fluctuations relate to interictal epileptiform discharges in stress sensitive epilepsy. Brain, 2016, 139(Pt 6): 1673-1679.
- 38. Wang ET, Chiang S, Cleboski S, et al. Seizure count forecasting to aid diagnostic testing in epilepsy. Epilepsia, 2022, 63(12): 3156-3167.
- 39. Jarosiewicz B, Morrell M. The RNS System: brain-responsive neurostimulation for the treatment of epilepsy. Expert Review of Medical Devices, 2021, 18(2): 129-138.
- 40. Ngadimon IW, Aledo-Serrano A, Arulsamy A, et al. An interplay between post-traumatic epilepsy and associated cognitive decline: a systematic review. Frontiers in Neurology, 2022, 13: 827571.
- 41. Jacobs J, Wu JY, Perucca P, et al. Removing high-frequency oscillations: a prospective multicenter study on seizure outcome. Neurology, 2018, 91(11): e1040-e1052.
- 42. Roehri N, Pizzo F, Lagarde S, et al. High-frequency oscillations are not better biomarkers of epileptogenic tissues than spikes. Annals of Neurology, 2018, 83(1): 84-97.
- 43. Behbahani S, Dabanloo NJ, Nasrabadi AM, et al. Pre-ictal heart rate variability assessment of epileptic seizures by means of linear and non-linear analyses. Anadolu Kardiyoloji Dergisi, 2013, 13(8): 797-803.
- 44. Jeppesen J, Fuglsang-Frederiksen A, Johansen P, et al. Seizure detection based on heart rate variability using a wearable electrocardiography device. Epilepsia, 2019, 60(10): 2105-2113.
- 45. Cogan D, Birjandtalab J, Nourani M, et al. Multi-biosignal analysis for epileptic seizure monitoring. International Journal of Neural Systems, 2017, 27(1): 1650031.
- 46. Mason F, Scarabello A, Taruffi L, et al. Heart rate variability as a tool for seizure prediction: a scoping review. Journal of Clinical Medicine, 2024, 13(3): 747.
- 47. Ghosh S, Sinha JK, Khan T, et al. Pharmacological and therapeutic approaches in the treatment of epilepsy. BioMedicines, 2021, 9(5): 300-304.
- 48. Löscher W, Schmidt D. Experimental and clinical evidence for loss of effect (tolerance) during prolonged treatment with antiepileptic drugs. Epilepsia, 2006, 47(8): 1253-1284.
- 49. Laxer KD, Trinka E, Hirsch LJ, et al. The consequences of refractory epilepsy and its treatment. Epilepsy & Behavior, 2014, 37: 59-70.
- 50. Duncan JS, Sander JW, Sisodiya S M, et al. Adult epilepsy. Lancet (London, England), 2006, 367(9516): 1087-1100.
- 51. Stevelink R, Koeleman BPC, Sander JW, et al. Refractory juvenile myoclonic epilepsy: a meta-analysis of prevalence and risk factors. European Journal of Neurology, 2019, 26(6): 856-864.
- 52. West S, Nevitt SJ, Cotton J, et al. Surgery for epilepsy. The Cochrane Database of Systematic Reviews, 2019, 6(6): Cd010541.
- 53. Jobst BC, Cascino GD. Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA, 2015, 313(3): 285-293.
- 54. Bell ML, Rao S, So EL, et al. Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI. Epilepsia, 2009, 50(9): 2053-2060.
- 55. Boon P, Vonck K, van Rijckevorsel K, et al. A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure, 2015, 32: 52-61.
- 56. Fisher RS, Afra P, Macken M, et al. Automatic vagus nerve stimulation triggered by ictal tachycardia: clinical outcomes and device performance--the U. S. E-37 trial. Neuromodulation, 2016, 19(2): 188-195.
- 57. Ventureyra EC. Transcutaneous vagus nerve stimulation for partial onset seizure therapy--a new concept. Child's Nervous System, 2000, 16(2): 101-102.
- 58. Rong P, Liu A, Zhang J, et al. An alternative therapy for drug-resistant epilepsy: transcutaneous auricular vagus nerve stimulation. Chinese Medical Journal, 2014, 127(2): 300-304.
- 59. He W, Jing X, Wang X, et al. Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial. Epilepsy & Behavior, 2013, 28(3): 343-346.
- 60. Aihua L, Lu S, Liping L, et al. A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy. Epilepsy & Behavior, 2014, 39: 105-110.
- 61. Barbella G, Cocco I, Freri E, et al. Transcutaneous vagal nerve stimulatio (t-VNS): An adjunctive treatment option for refractory epilepsy. Seizure, 2018, 60: 115-119.
- 62. Liu A, Rong P, Gong L, et al. Efficacy and safety of treatment with transcutaneous vagus nerve stimulation in 17 patients with refractory epilepsy evaluated by electroencephalogram, seizure frequency, and quality of life. Medical Science Monitor, 2018, 24: 8439-8448.
- 63. Stefan H, Kreiselmeyer G, Kerling F, et al. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia, 2012, 53(7): e115-e118.
- 64. Ben-Menachem E, Mañon-Espaillat R, Ristanovic R, et al. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. First International Vagus Nerve Stimulation Study Group. Epilepsia, 1994, 35(3): 616-626.
- 65. Amar AP, DeGiorgio CM, Tarver WB, et al. Long-term multicenter experience with vagus nerve stimulation for intractable partial seizures: results of the XE5 trial. Stereotactic and Functional Neurosurgery, 1999, 73(1-4): 104-108.
- 66. DeGiorgio CM, Schachter SC, Handforth A, et al. Prospective long-term study of vagus nerve stimulation for the treatment of refractory seizures. Epilepsia, 2000, 41(9): 1195-1200.
- 67. Handforth A, DeGiorgio CM, Schachter SC, et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology, 1998, 51(1): 48-55.
- 68. van Westrhenen A, Lazeron RHC, van Dijk J P, et al. Multimodal nocturnal seizure detection in children with epilepsy: A prospective, multicenter, long-term, in-home trial. Epilepsia, 2023, 64(8): 2137-2152.
- 69. Böttcher S, Bruno E, Epitashvili N, et al. Intra- and inter-subject perspectives on the detection of focal onset motor seizures in epilepsy patients. Sensors (Basel, Switzerland), 2022, 22(9): 3318.
- 70. You S, Hwan Cho B, Shon YM, et al. Semi-supervised automatic seizure detection using personalized anomaly detecting variational autoencoder with behind-the-ear EEG. Computer Methods and Programs in Biomedicine, 2022, 213: 106542.
- 71. Nasseri M, Pal Attia T, Joseph B, et al. Non-invasive wearable seizure detection using long-short-term memory networks with transfer learning. Journal of Neural Engineering, 2021, 18(5): 056017.
- 72. Swinnen L, Chatzichristos C, Jansen K, et al. Accurate detection of typical absence seizures in adults and children using a two-channel electroencephalographic wearable behind the ears. Epilepsia, 2021, 62(11): 2741-2752.
- 73. Böttcher S, Bruno E, Manyakov N V, et al. Detecting tonic-clonic seizures in multimodal biosignal data from wearables: methodology design and validation. JMIR mHealth and uHealth, 2021, 9(11): e27674.
- 74. Vandecasteele K, De Cooman T, Chatzichristos C, et al. The power of ECG in multimodal patient-specific seizure monitoring: added value to an EEG-based detector using limited channels. Epilepsia, 2021, 62(10): 2333-2343.
- 75. Baumgartner C, Whitmire LE, Voyles SR, et al. Using sEMG to identify seizure semiology of motor seizures. Seizure, 2021, 86: 52-59.
- 76. Frankel MA, Lehmkuhle MJ, Spitz MC, et al. Wearable reduced-channel eeg system for remote seizure monitoring. Frontiers in Neurology, 2021, 12: 728484.
- 77. De Cooman T, Vandecasteele K, Varon C, et al. Personalizing heart rate-based seizure detection using supervised svm transfer learning. Frontiers in Neurology, 2020, 11: 145.
- 78. Jeppesen J, Fuglsang-Frederiksen A, Johansen P, et al. Seizure detection using heart rate variability: a prospective validation study. Epilepsia, 2020, 61(Suppl 1): s41-s46.
- 79. You S, Cho BH, Yook S, et al. Unsupervised automatic seizure detection for focal-onset seizures recorded with behind-the-ear EEG using an anomaly-detecting generative adversarial network. Computer Methods and Programs in Biomedicine, 2020, 193: 105472.
- 80. Johansson D, Ohlsson F, Krýsl D, et al. Tonic-clonic seizure detection using accelerometry-based wearable sensors: a prospective, video-EEG controlled study. Seizure, 2019, 65: 48-54.
- 81. Forooghifar F, Aminifar A, Cammoun L, et al. A self-aware epilepsy monitoring system for real-time epileptic seizure detection. Mobile Networks and Applications, 2022, 27: 677-690.
- 82. Beniczky S, Conradsen I, Henning O, et al. Automated real-time detection of tonic-clonic seizures using a wearable EMG device. Neurology, 2018, 90(5): e428-e434.
- 83. Onorati F, Regalia G, Caborni C, et al. Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors. Epilepsia, 2017, 58(11): 1870-1879.
- 84. van Andel J, Ungureanu C, Arends J, et al. Multimodal, automated detection of nocturnal motor seizures at home: Is a reliable seizure detector feasible? Epilepsia Open, 2017, 2(4): 424-431.
- 85. Vandecasteele K, De Cooman T, Gu Y, et al. Automated epileptic seizure detection based on wearable ECG and PPG in a hospital environment. Sensors (Basel, Switzerland), 2017, 17(10): 2338.
- 86. Velez M, Fisher RS, Bartlett V, et al. Tracking generalized tonic-clonic seizures with a wrist accelerometer linked to an online database. Seizure, 2016, 39: 13-18.
- 87. Milosevic M, Van de Vel A, Bonroy B, et al. Automated detection of tonic-clonic seizures using 3-D accelerometry and surface electromyography in pediatric patients. IEEE Journal of Biomedical and Health Informatics, 2016, 20(5): 1333-1341.
- 88. Szabó C, Morgan LC, Karkar KM, et al. Electromyography-based seizure detector: Preliminary results comparing a generalized tonic-clonic seizure detection algorithm to video-EEG recordings. Epilepsia, 2015, 56(9): 1432-1437.
- 89. Patterson AL, Mudigoudar B, Fulton S, et al. Smartwatch by smartmonitor: assessment of seizure detection efficacy for various seizure types in children, a large prospective single-center study. Pediatric Neurology, 2015, 53(4): 309-311.
- 90. Jeppesen J, Beniczky S, Johansen P, et al. Exploring the capability of wireless near infrared spectroscopy as a portable seizure detection device for epilepsy patients. Seizure, 2015, 26: 43-48.
- 91. Halford JJ, Sperling MR, Nair DR, et al. Detection of generalized tonic-clonic seizures using surface electromyographic monitoring. Epilepsia, 2017, 58(11): 1861-1869.
- 92. Beniczky S, Polster T, Kjaer TW, et al. Detection of generalized tonic-clonic seizures by a wireless wrist accelerometer: a prospective, multicenter study. Epilepsia, 2013, 54(4): e58-61.
- 93. Conradsen I, Beniczky S, Hoppe K, et al. Automated algorithm for generalized tonic-clonic epileptic seizure onset detection based on sEMG zero-crossing rate. IEEE Transactions on Bio-Medical Engineering, 2012, 59(2): 579-585.
- 94. Poh MZ, Loddenkemper T, Reinsberger C, et al. Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor. Epilepsia, 2012, 53(5): e93-97.
- 95. Kramer U, Kipervasser S, Shlitner A, et al. A novel portable seizure detection alarm system: preliminary results. Journal of Clinical Neurophysiology, 2011, 28(1): 36-38.