1. |
Smallwood J, Bernhardt BC, Leech R, et al. The default mode network in cognition: a topographical perspective. Nat Rev Neurosci, 2021, 22(8): 503-513.
|
2. |
Menon V. 20 years of the default mode network: a review and synthesis. Neuron, 2023, 111(16): 2469-2487.
|
3. |
Mcgill ML, Devinsky O, Kelly C, et al. Default mode network abnormalities in idiopathic generalized epilepsy. Epilepsy Behav, 2012, 23(3): 353-359.
|
4. |
Whitfield-Gabrieli S, Ford JM. Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol, 2012, 8: 49-76.
|
5. |
Siniatchkin M, Capovilla G. Functional neuroimaging in epileptic encephalopathies. Epilepsia, 2013, 54(Suppl 8): 27-33.
|
6. |
Hirsch E, French J, Scheffer IE, et al. ILAE definition of the idiopathic generalized epilepsy syndromes: position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia, 2022, 63(6): 1475-1499.
|
7. |
Devinsky O, Elder C, Sivathamboo S, et al. Idiopathic generalized epilepsy. Neurology, 2024, 102(3): 1156-1168.
|
8. |
Kessler SK, Shinnar S, Cnaan A, et al. Pretreatment seizure semiology in childhood absence epilepsy. Neurology, 2017, 89(7): 673-679.
|
9. |
Elmali AD, Auvin S, Bast T, et al. How to diagnose and classify idiopathic (genetic) generalized epilepsies. Epileptic Disorders, 2020, 22(4): 399-420.
|
10. |
Sadleir LG, Farrell K, Smith S, et al. Electroclinical features of absence seizures in childhood absence epilepsy. Neurology, 2006, 67(3): 413-418.
|
11. |
Crunelli V, Lőrincz ML, Mccafferty C, et al. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain, 2020, 143(8): 2341-2368.
|
12. |
Parsons N, Bowden SC, Vogrin S, et al. Default mode network dysfunction in idiopathic generalised epilepsy. Epilepsy Research, 2020, 159: 106254.
|
13. |
Luo C, Li Q, Lai Y, et al. Altered functional connectivity in default mode network in absence epilepsy: a resting‐state fMRI study. Hum Brain Mapp, 2011, 32(3): 438-449.
|
14. |
Tangwiriyasakul C, Perani S, Centeno M, et al. Dynamic brain network states in human generalized spike-wave discharges. Brain, 2018, 141(10): 2981-2994.
|
15. |
Guo JN, Kim R, Chen Y, et al. Impaired consciousness in patients with absence seizures investigated by functional MRI, EEG, and behavioural measures: a cross-sectional study. The Lancet Neurology, 2016, 15(13): 1336-1345.
|
16. |
Carney PW, Masterton RaJ, Harvey AS, et al. The core network in absence epilepsy. Neurology, 2010, 75(10): 904-911.
|
17. |
Killory BD, Bai X, Negishi M, et al. Impaired attention and network connectivity in childhood absence epilepsy. NeuroImage, 2011, 56(4): 2209-2217.
|
18. |
Yang T, Luo C, Li Q, et al. Altered resting‐state connectivity during interictal generalized spike‐wave discharges in drug‐naïve childhood absence epilepsy. Hum Brain Mapp, 2012, 34(8): 1761-1767.
|
19. |
Ward RJ, Zucca FA, Duyn JH, et al. The role of iron in brain ageing and neurodegenerative disorders. The Lancet Neurology, 2014, 13(10): 1045-1060.
|
20. |
Englot DJ, Hinkley LB, Kort NS, et al. Global and regional functional connectivity maps of neural oscillations in focal epilepsy. Brain, 2015, 138(8): 2249-2262.
|
21. |
Hillebrand A, Nissen IA, Ris-Hilgersom I, et al. Detecting epileptiform activity from deeper brain regions in spatially filtered MEG data. Clin Neurophysiol, 2016, 127(8): 2766-2769.
|
22. |
Sun F, Wang S, Wang Y, et al. Differences in generation and maintenance between ictal and interictal generalized spike-and-wave discharges in childhood absence epilepsy: A magnetoencephalography study. Epilepsy Behav, 2023, 148: 109440.
|
23. |
Gupta D, Ossenblok P, Van Luijtelaar G. Space–time network connectivity and cortical activations preceding spike wave discharges in human absence epilepsy: a MEG study. Med Biol Eng Comput, 2011, 49(5): 555-565.
|
24. |
Wu C, Xiang J, Sun J, et al. Quantify neuromagnetic network changes from pre-ictal to ictal activities in absence seizures. Neuroscience, 2017, 357: 134-144.
|
25. |
Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58(4): 512-521.
|
26. |
Cheng C-H, Wang P-N, Mao H-F, et al. Subjective cognitive decline detected by the oscillatory connectivity in the default mode network: a magnetoencephalographic study. Aging, 2020, 12(4): 3911-3925.
|
27. |
Wang S, Wang Y, Li Y, et al. Alternations of neuromagnetic activity across neurocognitive core networks among benign childhood epilepsy with centrotemporal spikes: A multi-frequency MEG study. Front Neurosci, 2023, 17: 11568.
|
28. |
Sun J, Gao Y, Miao A, et al. Multifrequency dynamics of cortical neuromagnetic activity underlying seizure termination in absence epilepsy. Front Hum Neurosci, 2020, 14.
|
29. |
Hong H, Xiaoling G, Hua Y. Variable selection using mean decrease accuracy and mean decrease gini based on random forest; proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), F 26-28 Aug, 2016.
|
30. |
Meeren HKM, Pijn JPM, Van Luijtelaar ELJM, et al. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. The Journal of Neuroscience, 2002, 22(4): 1480-1495.
|
31. |
Gotman J, Grova C, Bagshaw A, et al. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. PNAS, 2005, 102(42): 15236-15240.
|
32. |
Holmes MD, Brown M, Tucker DM. Are "generalized" seizures truly generalized? Evidence of localized mesial frontal and frontopolar discharges in absence. Epilepsia, 2004, 45(12): 1568-1579.
|
33. |
Avoli M. A brief history on the oscillating roles of thalamus and cortex in absence seizures: thalamus and cortex roles in absence seizures. Epilepsia, 2012, 53(5): 779-789.
|
34. |
Paz JT, Huguenard JR. Microcircuits and their interactions in epilepsy: is the focus out of focus?. Nat Neurosci, 2015, 18(3): 351-359.
|
35. |
Shepherd GMG, Yamawaki N. Untangling the cortico-thalamo-cortical loop: cellular pieces of a knotty circuit puzzle. Nature Reviews Neuroscience, 2021, 22(7): 389-406.
|
36. |
Harmony T. The functional significance of delta oscillations in cognitive processing. Front Integr Neurosci, 2013, 7: 83.
|
37. |
Unterberger I, Trinka E, Kaplan PW, et al. Generalized nonmotor (absence) seizures-what do absence, generalized, and nonmotor mean?. Epilepsia, 2018, 59(3): 523-529.
|
38. |
Steriade M, Dossi RC, Paré D, et al. Fast oscillations (20-40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. PNAS, 1991, 88(10): 4396-4400.
|
39. |
Steriade M, Contreras D, Amzica F, et al. Synchronization of fast (30-40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. The Journal of Neuroscience, 1996, 16(8): 2788-2808.
|
40. |
Li H, Kraus A, Wu J, et al. Selective changes in thalamic and cortical GABAA receptor subunits in a model of acquired absence epilepsy in the rat. Neuropharmacology, 2006, 51(1): 121-128.
|
41. |
Russo E, Citraro R, Constanti A, et al. Upholding WAG/Rij rats as a model of absence epileptogenesis: hidden mechanisms and a new theory on seizure development. Neurosci Biobehav Rev, 2016, 71: 388-408.
|
42. |
Sorokin JM, Jeanne TP, Huguenard JR. Absence seizure susceptibility correlates with pre-ictal β oscillations. J Physiol-Paris, 2016, 110(4): 372-381.
|
43. |
Baillet S. Magnetoencephalography for brain electrophysiology and imaging. Nat Neurosci, 2017, 20(3): 327-339.
|
44. |
Rosburg T. Alpha oscillations and consciousness in completely locked-in state. Clin Neurophysiol, 2019, 130(9): 1652-1654.
|
45. |
Purdon PL, Pierce ET, Mukamel EA, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. PNAS, 2013, 110(12): E1142-E1151.
|
46. |
Meyer J, Maheshwari A, Noebels J, et al. Asynchronous suppression of visual cortex during absence seizures in stargazer mice. Nat Commun, 2018, 9(1): 1938.
|
47. |
Vijayan S, Ching S, Purdon PL, et al. Thalamocortical mechanisms for the anteriorization of α rhythms during propofol-induced unconsciousness. The Journal of Neuroscience, 2013, 33(27): 11070-11075.
|
48. |
Mashour GA, Pal D, Brown EN. Prefrontal cortex as a key node in arousal circuitry. Trends Neurosci, 2022, 45(10): 722-732.
|
49. |
Szaflarski JP, Difrancesco M, Hirschauer T, et al. Cortical and subcortical contributions to absence seizure onset examined with EEG/fMRI. Epilepsy Behav, 2010, 18(4): 404-413.
|
50. |
Carney PW, Masterton RaJ, Flanagan D, et al. The frontal lobe in absence epilepsy. Neurology, 2012, 78(15): 1157-1165.
|
51. |
Miao A, Xiang J, Tang L, et al. Using ictal high-frequency oscillations (80-500Hz) to localize seizure onset zones in childhood absence epilepsy: a MEG study. Neurosci Lett, 2014, 566: 21-26.
|
52. |
Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 2006, 129(Pt 3): 564-583.
|
53. |
Utevsky AV, Smith DV, Huettel SA. Precuneus is a functional core of the default-mode network. The Journal of Neuroscience, 2014, 34(3): 932-940.
|
54. |
Moeller F, Levan P, Gotman J. Independent component analysis (ICA) of generalized spike wave discharges in fMRI: comparison with general linear model-based EEG-fMRI. Hum Brain Mapp, 2011, 32(2): 209-217.
|
55. |
Bai X, Vestal M, Berman R, et al. Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. The Journal of Neuroscience, 2010, 30(17): 5884-5893.
|
56. |
Benuzzi F, Mirandola L, Pugnaghi M, et al. Increased cortical BOLD signal anticipates generalized spike and wave discharges in adolescents and adults with idiopathic generalized epilepsies. Epilepsia, 2012, 53(4): 622-630.
|
57. |
Kumar A, Lyzhko E, Hamid L, et al. Neuronal networks underlying ictal and subclinical discharges in childhood absence epilepsy. J Neurol, 2023, 270(3): 1402-1415.
|