1. |
Yoon KH, Kim YH, Ha JH, et al. Biomechanical evaluation of double bundle augmentation of posterior cruciate ligament using finite element analysis. Clin Biomech (Bristol, Avon), 2010, 25(10): 1042-1046.
|
2. |
Bougherara H, Zdero R, Mahboob Z, et al. The biomechanics of a validated finite element model of stress shielding in a novel hybrid total knee replacement. Proc Inst Mech Eng H, 2010, 224(10): 1209-1219.
|
3. |
Kobayashi A, Ishii Y, Takeda M, et al. Comparison of analog 2D and digital 3D preoperative templating for predicting implant size in total knee arthroplasty. Comput Aided Surg, 2012, 17(2): 96-101.
|
4. |
Dumas R, Moissenet F, Gasparutto X, et al. Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait. Proc Inst Mech Eng H, 2012, 226(2): 146-160.
|
5. |
王大忠, 余正红, 周民强, 等. 3D膝关节模型的构建. 中国组织工程研究与临床康复, 2010, 14(48): 8945-8949.
|
6. |
陈文栋, 李彦林, 许鹏, 等. 正常人与尸体膝关节MRI二维图像重建前交叉韧带三维模型的比较研究. 中国修复重建外科杂志, 2011, 25(11): 1314-1318.
|
7. |
许鹏, 李彦林, 陈文栋, 等. MRI影像下股骨髁间窝三维数字化解剖学数据与实体解剖测量值的差异. 中国组织工程研究与临床康复, 2011, 15(43): 8006-8009.
|
8. |
王建平, 韩雪莲, 季文婷, 等. 人体膝胫股关节相对运动的三维图像配准分析. 生物医学工程学杂志, 2009, 26(6): 1340-1344.
|
9. |
Zhang X, Jiang G, Wu C, et al. A subject-specific finite element model of the anterior cruciate ligament. Conf Proc IEEE Eng Med Biol Soc, 2008, 2008: 891-894.
|
10. |
Nikolopoulos CE, Mavrogenis AF, Petrocheilou G, et al. A three-dimensional medical imaging model for quantitative assessment of proximal tibia vs. anterior iliac crest cancellous bone. Knee, 2008, 15(3): 233-237.
|
11. |
D’Lima DD, Chen PC, Kessler O, et al. Effect of meniscus replacement fixation technique on restoration of knee contact mechanics and stability. Mol Cell Biomech, 2011, 8(2): 123-134.
|
12. |
Rahemi H, Farahmand F, Rezaeian T, et al. Computer simulation of knee arthrometry to study the effects of partial ACL injury and tibiofemoral contact. Conf Proc IEEE Eng Med Biol Soc, 2008, 2008: 895-898.
|
13. |
Martelli S, Lopomo N, Bignozzi S, et al. Validation of a new protocol for navigated intraoperative assessment of knee kinematics. Comput Biol Med, 2007, 37(6): 872-878.
|
14. |
Koo S, Giori NJ, Gold GE, et al. Accuracy of 3D cartilage models generated from MR images is dependent on cartilage thickness: laser scanner based validation of in vivo cartilage. J Biomech Eng, 2009, 131(12): 121004.
|
15. |
Xiao M, Higginson JS. Muscle function may depend on model selection in forward simulation of normal walking. J Biomech, 2008, 41(15): 3236-3242.
|
16. |
Chang CY, Rupp JD, Reed MP, et al. Predicting the effects of muscle activation on knee, thigh, and hip injuries in frontal crashes using a finite-element model with muscle forces from subject testing and musculoskeletal modeling. Stapp Car Crash J, 2009, 53: 291-328.
|
17. |
Yamada Y, Toritsuka Y, Horibe S, et al. In vivo movement analysis of the patella using a three-dimensional computer model. J Bone Joint Surg (Br), 2007, 89(6): 752-760.
|
18. |
Hunter BV, Thelen DG, Dhaher YY. A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation. IEEE Trans Neural Syst Rehabil Eng, 2009, 17(2): 167-175.
|
19. |
Martelli S, Zaffagnini S, Bignozzi S, et al. Validation of a new protocol for computer-assisted evaluation of kinematics of double-bundle ACL reconstruction. Clin Biomech (Bristol, Avon), 2006, 21(3): 279-287.
|
20. |
Xie F, Yang L, Guo L, et al. A study on construction three-dimensional nonlinear finite element model and stress distribution analysis of anterior cruciate ligament. J Biomech Eng, 2009, 131(12): 1-6.
|
21. |
Gruionu LG, Gruionu G, Pastrama S, et al. Contact studies between total knee replacement components developed using explicit finite elements analysis. Med Image Comput Comput Assist Interv, 2009, 12(Pt 2): 316-322.
|
22. |
Gan Y, Xu D, Lu S, et al. Novel patient-specific navigational template for total knee arthroplasty. Comput Aided Surg, 2011, 16(6): 288-297.
|
23. |
Schmutz B, Rathnayaka K, Wullschleger ME, et al. Quantitative fit assessment of tibial nail designs using 3D computer modeling. Injury, 2010, 41(2): 216-219.
|
24. |
Hofbauer M, Valentin P, Kdolsky R, et al. Rotational and translational laxity after computer-navigated single- and double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 2010, 18(9): 1201-1207.
|
25. |
Chong DY, Hansen UN, van der Venne R, et al. The influence of tibial component fixation techniques on resorption of supporting bone stock after total knee replacement. J Biomech, 2011, 44(5): 948-954.
|
26. |
Innocenti B, Pianigiani S, Labey L, et al. Contact forces in several TKA designs during squatting: A numerical sensitivity analysis. J Biomech, 2011, 44(8): 1573-1581.
|
27. |
Mason JB, Fehring TK, Estok R, et al. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty, 2007, 22(8): 1097-1106.
|
28. |
Tigani D, Rimondi E, Trentani P, et al. Three-dimensional analysis of image-free navigation system for total knee arthroplasty. Musculoskelet Surg, 2011, 95(2): 81-87.
|
29. |
Kim HY, Seo YJ, Kim HJ, et al. Tension changes within the bundles of anatomic double-bundle anterior cruciate ligament reconstruction at different knee flexion angles: a study using a 3-dimensional finite element model. Arthroscopy, 2011, 27(10): 1400-1408.
|
30. |
Wang J, Ye M, Liu Z, et al. Precision of cortical bone reconstruction based on 3D CT scans. Comput Med Imaging Graph, 2009, 33(3): 235-241.
|