1. |
Webber DJ, Bradbury EJ, McMahon SB, et al. Transplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord. Regen Med, 2007, 2 (6): 929-945.
|
2. |
Xu CJ, Xu L, Huang LD, et al. Combined NgR vaccination and neural stem cell transplantation promote functional recovery after spinal cord injury in adult rats. Neuropathol Appl Neurobiol, 2011, 37(2): 135-155.
|
3. |
Xu L, Xu C, Lü HZ, et al. Long-term fate of allogeneic neural stem cells following transplantation into injured spinal cord. Stem Cell Rev, 2010, 6 (1): 121-136.
|
4. |
Cummings BJ, Uchida N, Tamaki SJ, et al. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U S A, 2005, 102 (39): 14069-14074.
|
5. |
Salazar DL, Uchida N, Hamers FP, et al. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS One, 2010, 5(8): 15.
|
6. |
Shihabuddin LS, Horner PJ, Ray J, et al. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci, 2000, 20 (23): 8727-8735.
|
7. |
Karimi-Abdolrezaee S, Eftekharpour E, Wang J, et al. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci, 2006, 26 (13): 3377-3389.
|
8. |
Parr AM, Kulbatski I, Tator CH. Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury. J Neurotrauma, 2007, 24 (5): 835-845.
|
9. |
Imitola J, Raddassi K, Park KI, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1 alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A, 2004, 101 (52): 18117-18122.
|
10. |
Kimura A, Ohmori T, Ohkawa R, et al. Essential roles of sphingosine 1-phosphate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury. Stem Cells, 2007, 25(1): 115-124.
|
11. |
Al Nimer F, Wennersten A, Holmin S, et al. MHC expression after human neural stem cell transplantation to brain contused rats. Neuroreport, 2004, 15 (12): 1871-1875.
|
12. |
Yin L, Fu SL, Shi GY, et al. Expression and regulation of major histocompatibility complex on neural stem cells and their lineages. Stem Cells Dev, 2008, 17 (1): 53-65.
|
13. |
Pluchino S, Gritti A, Blezer E, et al. Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann Neurol, 2009, 66(3): 343-354.
|
14. |
Ben-Hur T. Immunomodulation by neural stem cells. J Neurol Sci, 2008, 265(1-2): 102-104.
|
15. |
Lee JM, Yan P, Xiao Q, et al. Methylprednisolone protects oligodendrocytes but not neurons after spinal cord injury. J Neurosci, 2008, 28(12): 3141-3149.
|
16. |
Miller RH, Bai L, Lennon DP, et al. The potential of mesenchymal stem cells for neural repair. Discov Med, 2010, 9(46): 236-242.
|
17. |
Sheth RN, Manzano G, Li X, et al. Transplantation of human bone marrow-derived stromal cells into the contused spinal cord of nude rats. J Neurosurg Spine, 2008, 8(2): 153-162.
|
18. |
Kim KN, Oh SH, Lee KH, et al. Effect of human mesenchymal stem cell transplantation combined with growth factor infusion in the repair of injured spinal cord. Acta Neurochir Suppl, 2006, 99(1): 133-136.
|
19. |
Nandoe Tewarie RD, Hurtado A, Ritfeld GJ, et al. Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord. J Neurotrauma, 2009, 26(12): 2313-2322.
|
20. |
Cizkova D, Novotna I, Slovinska L, et al. Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. J Neurotrauma, 2011, 28(9): 1951-1961.
|
21. |
Vaquero J, Zurita M. Bone marrow stromal cells for spinal cord repair: a challenge for contemporary neurobiology. Histol Histopathol, 2009, 24 (1): 107-116.
|
22. |
Koda M, Okada S, Nakayama T, et al. Hematopoietic stem cell and marrow stromal cell for spinal cord injury in mice. NeuroReport, 2005, 16 (16): 1763-1767.
|
23. |
Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood, 2007, 110 (10): 3499-3506.
|
24. |
Dupuis L, Pehar M, Cassina P, et al. Nogo receptor antagonizes p75NTR-dependent motor neuron death. Proc Natl Acad Sci U S A, 2008, 105 (2): 740-745.
|
25. |
Lee WS, Suzuki Y, Graves SS, et al. Canine bone marrow-derived mesenchymal stromal cells suppress alloreactive lymphocyte proliferation in vitro but fail to enhance engraftment in canine bone marrow transplantation. Biol Blood Marrow Transplant, 2011, 17 (4): 465-475.
|
26. |
Zappia E, Casazza S, Pedemonte E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 2005, 106(5): 1755-1761.
|
27. |
Chung YC, Ma MC, Huang BY, et al. Protection of bone marrow-derived CD45+/CD34-/lin- stromal cells with immunosuppressant activity against ischemia/reperfusion injury in rats. Chin J Physiol, 2011, 54(3): 169-182.
|
28. |
Gerdoni E, Gallo B, Casazza S, et al. Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol, 2007, 61(3): 219-227.
|