• 1The First Department of Orthopaedics, the Second Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China;;
  • 2School of Aerospace,Xi’an Jiaotong University.;
Export PDF Favorites Scan Get Citation

Objective To analyze the biomechanical changes of the adjacent cervical facet joints when the angled cervical prosthesis is replaced. Methods A total of 400 northwestern people were involved, with an age of 40 years or older.The cervical vertebra lateral X-ray films were taken, and the cervical angles were measured by professional computer aided design software, then the cervical intervertebral disc prosthesis with 10° angle was designed. The finite element models of C4,5
and C4-6 segments with intact cervical discs were developed; the C4,5 disc was replaced by the cervical prosthesis with 0° and 10° angle respectively; and then all models were subjected to axial loading, flexion/extension, lateral bending, and torsion loading conditions; the stress effects on adjacent facet joints after replacement were observed by comparing with that of the intact model. Results The cervical angles were (9.97 ± 3.64)° in C3,4, (9.95 ± 4.34)° in C4,5, (8.59 ± 3.75)° in C5,6, and (8.49 ± 3.39)° in C6,7, showing no significant difference between C3,4 and C4,5, C5,6 and C6,7 (P  gt; 0.05) and showing significant differences between the other cervical angles (P  lt; 0.05). When C4,5 model was axially loaded, no significant difference in equivalent shearing stress were observed in intact, 0°, and 10° groups; at flexion/extension loading, the stress was biggest in intact group, and was smallest in 10° group; at lateral bending, the stress got the high rank in intact group, and was minimum in 10° group; at torsion loading, the stress state of 10° group approached to the intact one condition. When C4-6 model was loaded, the facet joint stress of the replaced segment (C4,5) decreased significantly at axial loading, flexion/extension, and lateral bending; while no obvious decrease was observed at torsion loading; the stress of the adjacent inferior disc (C5,6) decreased significantly at axial loading
and lateral bending condition, while less decrease was observed at torsion loading, no significant change at flexion/extension condition, it approached to that of the intact one. Conclusion The finite element analysis reveals that the biomechanical properties of 10° designed prosthesis is approximate to that of the intact cervical disc, thus the 10° designed prosthesis can meet the requirements of biomechanical function reconstruction of the cervical spine.

Citation: BAI Chuanyi,ZHANG Weijie,LING Wei,TIAN Zhenxing,DANG Xiaoqian,WANG Kunzheng.. EFFECTS OF NOVEL ANGLED CERVICAL DISC REPLACEMENT ON FACET JOINT STRESS. Chinese Journal of Reparative and Reconstructive Surgery, 2012, 26(4): 390-395. doi: Copy