1. |
Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys, 1998, 20(2): 92-102.
|
2. |
Swadener JG, Rho JY, Pharr GM. Effects of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone. J Biomed Mater Res, 2001, 57(1): 108-112.
|
3. |
Novitskaya E, Chen PY, Lee S, et al. Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomater, 2011, 7(8): 3170-3177.
|
4. |
Martin RB, Ishida J. The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J Biomech, 1989, 22(5): 419-426.
|
5. |
Urist MR, Dawson E. Intertransverse process fusion with the aid of chemosterilized autolyzed antigen-extracted allogeneic (AAA) bone. Clin Orthop Relat Res, 1981, (154): 97-113.
|
6. |
Urist MR, Silverman BF, Büring K, et al. The bone induction principle. Clin Orthop Relat Res, 1967, (53): 243-283.
|
7. |
Bigham AS, Dehghani SN, Shafiei Z, et al. Xenogenic demineralized bone matrix and fresh autogenous cortical bone effects on experimental bone healing: radiological, histopathological and biomechanical evaluation. J Orthop Traumatol, 2008, 9(2): 73-80.
|
8. |
Mistry AS, Mikos AG. Tissue engineering strategies for bone regeneration. Adv Biochem Eng Biotechnol, 2005, 94: 1-22.
|
9. |
Sasso RC, LeHuec JC, Shaffrey C, et al. Iliac crest bone graft donor site pain after anterior lumbar interbody fusion: a prospective patient satisfaction outcome assessment. J Spinal Disord Tech, 2005, 18(Suppl): S77-81.
|
10. |
Silber JS, Anderson DG, Daffner SD, et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976), 2003, 28(2): 134-139.
|
11. |
Buck BE, Resnick L, Shah SM, et al. Human immunodeficiency virus cultured from bone. Implications for transplantation. Clin Orthop Relat Res, 1990, (251): 249-253.
|
12. |
Honsawek S, Bumrungpanichthaworn P, Thanakit V. Osteoinductive potential of small intestinal submucosa/demineralized bone matrix as composite scaffolds for bone tissue engineering. Asian Biomed, 2010, 4 (6): 913-922.
|
13. |
Guizzardi S, Di Silvestre M, Scandroglio R, et al. Implants of heterologous demineralized bone matrix for induction of posterior spinal fusion in rats. Spine (Phlia Pa 1976), 1992, 17(6): 701-707.
|
14. |
Pietrzak WS, Perns SV, Keyes J, et al. Demineralized bone matrix graft: a scientific and clinical case study assessment. J Foot Ankle Surg, 2005, 44(5): 345-353.
|
15. |
Honsawek S, Dhitiseith D, Phupong V. Gene expression characteristics of osteoblast differentiation in human umbilical cord mesenchymal stem cells induced by demineralized bone matrix. Asian Biomed, 2007, 1(4): 383-391.
|
16. |
Kasten P, Luginbühl R, van Griensven M, et al. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, beta-tricalcium phosphate and demineralized bone matrix. Biomaterials, 2003, 24(15): 2593-603.
|
17. |
Xie H, Yang F, Deng L, et al. The performance of a bone-derived scaffold material in the repair of critical bone defects in a rhesus monkey model. Biomaterials, 2007, 28(22): 3314-3324.
|
18. |
Honsawek S, Bumrungpanichthaworn P, Thitiset T, et al. Gene expression analysis of demineralized bone matrix-induced osteogenesis in human periosteal cells using cDNA array technology. Genet Mol Res, 2011, 10(3): 2093-2103.
|
19. |
Jackson DW, Simon TM, Lowery W, et al. Biologic remodeling after anterior cruciate ligament reconstruction using a collagen matrix derived from demineralized bone. An experimental study in the goat model. Am J Sports Med, 1996, 24(4): 405-414.
|
20. |
Yamada T. Bone-demineralized bone-bone graft for ligament reconstruction in rats. J Med Dent Sci, 2004, 51(1): 45-52.
|
21. |
Burstein AH, Zika JM, Heiple KG, et al. Contribution of collagen and mineral to the elastic-plastic properties of bone. J Bone Joint Surg (Am), 1975, 57(7): 956-961.
|
22. |
Paterson CR. Collagen chemistry and the brittle bone diseases. Endeavour, 1988, 12(2): 56-59.
|
23. |
Wang X, Bank RA, Tekoppele JM, et al. The role of collagen in determining bone mechanical properties. J Orthop Res, 2001, 19(6): 1021-1026.
|
24. |
侯振德, 高瑞亭, 周欣竹. 干牛骨拉伸弹性模量沿径向的分布. 中国生物医学工程学报, 1995, 14(2): 149-154.
|
25. |
Bowman SM, Zeind J, Gibson LJ, et al. The tensile behavior of demineralized bovine cortical bone. J Biomech, 1996, 29(11): 1497-501.
|
26. |
Catanese J 3rd, Iverson EP, Ng RK, et al. Heterogeneity of the mechanical properties of demineralized bone. J Biomech, 1999, 32(12): 1365-1369.
|
27. |
Omae H, Zhao C, Sun YL, et al. Multilayer tendon slices seeded with bone marrow stromal cells: a novel composite for tendon engineering. J Orthop Res, 2009, 27(7): 937-942.
|
28. |
Mauney JR, Sjostorm S, Blumberg J, et al. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int, 2004, 74(5): 458-468.
|
29. |
向强, 邓聪颖, 张远, 等. 成骨细胞特异性钙黏蛋白涂布脱钙骨基质材料对BMSCs 黏附及成骨分化能力的影响. 中国修复重建外科杂志, 2009, 23(5): 602-606.
|
30. |
Hou T, Li Q, Luo F, et al. Controlled dynamization to enhance reconstruction capacity of tissue-engineered bone in healing critically sized bone defects: an in vivo study in goats. Tissue Eng Part A, 2010, 16(1): 201-212.
|
31. |
侯天勇, 罗飞, 刘杰, 等. 冻干组织工程骨与组织工程骨成骨活性比较研究. 中国修复重建外科杂志, 2010, 24(7): 779-784.
|
32. |
杨军, 周振东, 李建军, 等. 动态压力促进骨基质支架中微血管形成的实验研究. 中华骨科杂志, 2011, 31(4): 372-378.
|
33. |
Pan Y, Dong SW, Hao Y, et al. Demineralized bone matrix gelatin as scaffold for tissue engineering. Afr J Microbiol Res, 2010, 4(9): 865-870.
|
34. |
Summitt MC, Reisinger KD. Characterization of the mechanical properties of demineralized bone. J Biomed Mater Res A, 2003, 67(3): 742-750.
|