Objective Mesh infection may occur after incisional hernia repair using prosthetic mesh. Preparation of antibiotics-bonded meshes to prevent infection is one of the solutions. To evaluate the anti-infection effect of polypropylene mesh bonded norvancomycin slow-release microsphere by preparing the rat model of incisional hernia repair contaminated
with Staphylococcus aureus. Methods The norvancomycin slow-release microspheres were prepared by emulsion and solvent evaporation method and they were bonded to polypropylene mesh (50 mg/mesh). The appearance of the microspheres was observed using scanning electronic microscope (SEM). The content of norvancomycin in microspheres and the release rate of the norvancomycin in norvancomycin-bonded polypropylene mesh were detected using high performance l iquid chromatography method. The rat models of incisional hernia were developed in 40 healthy Sprague Dawley rats, aged 10-11 weeks and weighing 200-250 g. The rats were divided randomly into the experimental group (norvancomycin-bonded polypropylene mesh repair, n=20) and the control group (polypropylene mesh repair, n=20). And then the mesh was contaminated with Staphylococcus aureus. The wound heal ing was observed after operation. At 3 weeks after operation, the mesh and the tissue around the mesh were harvested to perform histological observation and to classify the inflammatory reaction degree. Results The norvancomycin microsphere had integrated appearance and smooth surface with uniform particle diameter, 64% of particle
diameter at 60 to 100 μm, and the loading-capacity of norvancomycin was 19.79%. The norvancomycin-bonded polypropylene patch had well-distributed surface and the loading-capacity of norvancomycin was (7.90 ± 0.85) mg/cm2. The release time of norvancomycin in vitro could last above 28 days and the accumulative release rate was 72.6%. The rats of 2 groups all survived to experiment completion. Wound infection occurred in 2 rats of the experimental group (10%) and 20 rats of the control group (100%), showing significant difference (χ2=32.727 3, P=0.000 0). The inflammatory reaction in experimental group was not obvious, grade I in 16 rats and grade II in 4 rats, and numerous inflammatory cell infiltration occurred in the control group, grade II in 3 rats and grade III in 17 rats, showing significant difference (Z=32.314, P=0.000). Conclusion The polypropylene mesh bonded norvancomycin slow-release microsphere has definite anti-infection effect in rat model of incisional hernia repair contaminated by Staphylococcus aureus.
Citation: LIU Feide,GAO Lili,LIU Tianjun,LI Jiye,YAO Sheng,WANG Shibing,ZHU Yingmei,PEI Lijuan. PREVENTIVE EFFECT OF POLYPROPYLENE MESH BONDED NORVANCOMYCIN SLOW-RELEASE MICROSPHERE ON STAPHYLOCOCCUS AUREUS INFECTION OF INCISIONAL HERNIA REPAIR MODEL. Chinese Journal of Reparative and Reconstructive Surgery, 2011, 25(5): 582-586. doi: Copy