Objective By culturing tendon sheath fibroblasts, epitenon tenocytes and endotenon tenocytes of rabbits’ tendon in vitro, to study the effects of mannose-6-phosphate on transforming growth factor β (TGF-β) peptide and receptor expression, and to provide the experimental basis for preventing the tendon heal ing adhesion by mannose- 6-phosphate. Methods Eight adult New Zealand white rabbits, regardless of their gender and weighing 4.0-4.5 kg, were selected. Tendon sheath fibroblasts, epitenon tenocytes, and endotenon tenocytes were isolated from rabbit flexor tendon and cultured separately. All 3 cells were divided into 2 groups at random after cells were adjusted to a concentration of 4 × 104 per well and 1 × 104/mL. The first was the control group without supplementation. The experimental group was supplemented with
mannose-6-phosphate. The expressions of TGF-β and TGF-β receptor were quantified with enzyme-l inked immunosorbent assay. The expression of TGF-β1 mRNA was also assessed with in situ hybridization and the expression of TGF-β1 was assessed with immunohistochemistry. Results The expressions of TGF-β and TGF-β receptor in experimental group were significantly lower than that in control group (P lt; 0.05). The expression levels of TGF-β1 and TGF-β2 decreased in descending order of tendon sheath fibroblasts (36.1%, 37.9%), epitenon tenocytes (31.0%, 32.1%), and endotenon tenocytes (31.2%, 27.0%). The expression levels of TGF-β3 decreased in descending order of endotenon tenocytes (42.5%), tendon sheath fibroblasts (41.2%), and epitenon tenocytes (33.3%). The expression levels of TGF-β receptor 1 and TGF-β receptor 2 decreased in descending order of epitenon tenocytes (29.9%, 26.2%), endotenon tenocytes (27.8%, 23.5%), and tendon sheath fibroblasts (23.1%, 20.0%). The expression levels of TGF-β receptor 3 decreased in descending order of endotenon tenocytes (26.1%), epitenon tenocytes (19.2%), and tendon sheath fibroblasts (15.8%). In experimental group, the positive expression of TGF-β1 mRNA and the expression level of intracellular TGF-β1 mRNA in all 3 tendon cells were significantly lower than those in the control group (P lt; 0.05). Immunohistochemical staining showed the expressions of TGF-β1 in all 3 tendon cells were significantly lower in the
experimental group than in the control group. Conclusion Mannose-6-phosphate can significantly decrease the expressions of TGF-β peptide, TGF-β receptor, and TGF-β1 mRNA. Modulation of mannose-6-phosphate levels may provide a mean of modulating the effects of TGF-β on adhesion formation in flexor tendon wound heal ing.
Citation: YANG Ruixiang,XIA Changsuo,WANG Xiuying,SUN Kang,YANG Xuanying,TIAN Shaoqi,HONG Guangxiang. EFFECTS OF MANNOSE-6-PHOSPHATE ON TRANSFORMING GROWTH FACTOR β AND TRANSFORMING GROWTH FACTOR β RECEPTOR EXPRESSION OF FLEXOR TENDON CELLS. Chinese Journal of Reparative and Reconstructive Surgery, 2010, 24(1): 64-69. doi: Copy