• 1Department of Orthopedics, the First Affiliated Hospital of Kunming Medical College, Kunming Yunnan, 650032, P.R.China;;
  • 2Affiliated Orthopedic Hospital of Kunming General Hospital of Chengdu Military Command.;
Export PDF Favorites Scan Get Citation

Objective To evaluate the osteogenesis of bi phasic ceramic-l ike biologic bone (BCBB) with tissue engineering in repairing segmental bone defects. Methods BMSCs isolated from the femoral and tibial marrow of 2-weekold Japanese white rabbit were cultured to passage 3. Then 20 μL of the cell suspension at a concentration of 1 × 107 cells/mL
were seeded into 15 mm × 15 mm × 5 mm BCBB block; the construction of tissue engineered BCBB was completed after 8 days of compound culture. Forty-eight adult Japanese white rabbits were randomly divided into groups A, B, C and D, then BCBBs cultured with BMSCs in vitro for 8 days (group A) and only BCBBs without BMSCs (group B) were respectively implanted into the radius segmental bone defects of rabbits, autogenous il iac bone graft (group C) and empty defect (group D) were used as controls. The specimens were examined after 4, 8, 12 and 24 weeks, the osteogenesis was evaluated through X-ray radiograph and histology examination. Results X-ray examination: the border between the material and host’s bone was clear after 4 weeks, and blurred after 8 weeks in group A and group B; the density of some part of the edge of the material was similar to that of radius and there was high density imaging in the materials of group A after 12 weeks; there was much high density imaging in the materials of group B after 12 weeks. The medullary cavity of bone was formed and l ittle high density imaging in the materials of group A after 24 weeks. Some high density imaging still existed in the materials of group B after 24 weeks. The X-ray evaluated scores showed that the scores of group A was higher than that of group B, and there was significant difference between group A and group B after 12 and 24 weeks (P  lt; 0.05). Histological examination: there was new bone formation in the materials and also new bone grew adhesively on the surface of BCBB in group A. While in group B only new bone grew and attached to the surface of BCBB. BCBB degraded more with the time and more new bone formed. The histological evaluation showed that the bone forming area in group A was more than that in group B, and there was significant difference between group A and group B (P  lt; 0.05). Conclusion The osteogenesis of BCBB with tissue engineering was superior to only BCBB, BCBB could be used as a scaffold of bone tissue engineering.

Citation: LI Yanlin,GUO Hongtao,HAN Rui,YANG Hao,WANG Yongnian. EXPERIMENTAL STUDY ON REPAIRING SEGMENTAL BONE DEFECTS BY BIPHASIC CERAMIC-LIKE BIOLOGIC BONE. Chinese Journal of Reparative and Reconstructive Surgery, 2009, 23(5): 607-611. doi: Copy