Objective To set up and to evaluate an acute closed brain injury model in rats. Methods The acute closed brain injury was produced in rats by using an impactor consisting of a stand, a guide tube, a weight and a footplate. Ninetysix SD rats were divided into a control group(n=32, no impact), a mild injury group(n=32, impact once at force level of 400 g·cm) and a severe injury group(n=32, impact once at force level of 800 g·cm) to elucidate the physiological responses, the pathophysiological changes and brain edema after brain injury at different injury levels. Results In the mild injury group and the severe injury group, a sudden rise or reduction of blood pressure, deep and fast breath apnea, and pain reflects inhibition were observed. The responses were more obvious in the severe injury group than in the mild injury group. The water content of the brain increased after 6 hours of injury. The pathological contusion and edema of brain were noted or above the impact force level of 800 g·cm. When the impact force rose to or over 1200g·cm, the animals died of persistent apnea mostly. Conclusion Although the established closed brain injury model with different biomechanical mechanisms as the clinical brain injury, it is in conformity with pathological changes and pathophysiological characteristics of acute clinical brain injury, it can be utilized extensively because of its convenient and practice.
Citation: ZHANG Rongjun,YOU Chao,CAI Bowen,et al.. ESTABLISHMENT AND EVALUATION OF ACUTE CLOSED BRAIN INJURY MODEL IN RATS ACCORDING TO FEENEY’S METHOD. Chinese Journal of Reparative and Reconstructive Surgery, 2005, 19(12): 1015-1018. doi: Copy