OBJECTIVE: To study the effect of basic fibroblast growth factor (bFGF) and hyaluronic acid gel (HAG) combined with freeze-dried bone allograft in repairing segmental bone defect and to explore their mechanism. METHODS: The 15 mm segmental bone/periosteum defects were created on bilateral radius in 50 New Zealand rabbits and were treated with four different kinds of implants on 25 radius respectively (group A: bFGF and HAG combined with freeze-dried bone; group B: bFGF combined with freeze-dried bone; group C: HAG combined with freeze-dried bone; group D: simple freeze-dried bone as a control). The repair of defect was observed radiologically and histologically and were analyzed by radionuclide bone imaging and measurement of calcium contents at different periods. RESULTS: The new bone formation, bone metabolic activity and calcium contents of defects were higher in group A than in group B (P lt; 0.05), and were higher in group B than in groups C and D (P lt; 0.05). There were no significant difference between groups C and D. The bone defects healed in the 8th week in group A, in the 10th week in group B, but did not healed in the 10th week in groups C and D. CONCLUSION: As an osteogenetic factor, bFGF promotes the new bone formation; as a slow-release carrier, HAG enhances the effectiveness of bFGF. The combination of bFGF, HAG and freeze-dried bone allograft can repair the segmental bone defect more effectively.
Citation: CHEN Qing,GU Jie fu,CAI Lin.. EXPERIMENTAL STUDY OF REPAIRING SEGMENTAL BONE DEFECT WITH RECONSTITUTED FREEZE-DRIED BONE ALLOGRAFT. Chinese Journal of Reparative and Reconstructive Surgery, 2003, 17(1): 5-8. doi: Copy