Purpose To estabalish a quantifying model of retinal neovascularization suitable for the study of pathogenesis and therapeutic intervention for the retinal neovascularization. Methods Sixteen one-week-old C57BL/6 mice were exposed to 75% oxygen for 5 days and then to room air and 16 mice of the same age kept in room air as controls.Ink-perfused retinal flatmount was examined to assess the oxygen-induced changes of retinal vessels.The proliferated neovascular response was quantitated by counting the nuclei of endothelial cells of new vessels extending from the retina into the vitreous in 6 mu;m sagittal cross sections. VEGF and bFGF were determined on the cross-sections after immunohistochemcal stain. Results Constriction and closure of the blood vessels were found under the hyperoxia condition,and dilation and proliferation were found under the relatively hypoxia status.There was a mean of 24 neovascular nuclei per cross-section in the oxygen-treated retina and less than 1 nucleus in the control group (P<0.001).VEGF stain was found ber in the inner retinal layer of oxygen-treated mouse than in that of the controls. Conclusion The quantifying model of retinal neovascularization may fascilitate the further researches of medical intervention and pathogenesis of retinal neovacularization. (Chin J Ocul Fundus Dis,2000,16:213-284)
Citation: PENG Xiaoyan,CHEN Danian,YAN Mi,et al.. A quantifying model of vascular proliferation in oxygen-induced retinopathy. Chinese Journal of Ocular Fundus Diseases, 2000, 16(4): 260-163. doi: Copy