1. |
Abraham C, Cho JH. Inflammatory bowel disease [J]. N Engl J Med, 2009, 361(21): 20662078.
|
2. |
Cho JH, Weaver CT. The genetics of inflammatory bowel disease [J]. Gastroenterology, 2007, 133(4): 13271339.
|
3. |
Weinstock JV. Helminths and mucosal immune modulation [J]. Ann N Y Acad Sci, 2006, 1072: 356364.
|
4. |
Frank DN, St Amand AL, Feldman RA, et al. Molecularphylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases [J]. Proc Natl Acad Sci U S A, 2007, 104(34): 1378013785.
|
5. |
Turner JR. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application [J]. Am J Pathol, 2006, 169(6): 19011909.
|
6. |
Dahan S, Roda G, Pinn D, et al. Epithelial: lamina propria lymphocyte interactions promote epithelial cell differentiation [J]. Gastroenterology, 2008, 134(1): 192203.
|
7. |
McVay LD, Keilbaugh SA, Wong TM, et al. Absence of bacterially induced RELMbeta reduces injury in the dextran sodium sulfate model of colitis [J]. J Clin Invest, 2006, 116(11): 29142923.
|
8. |
Habtezion A, Toivola DM, Butcher EC, et al. Keratin8deficient mice develop chronic spontaneous Th2 colitis amenable to antibiotic treatment [J]. J Cell Sci, 2005, 118(Pt 9): 19711980.
|
9. |
Kaser A, Lee AH, Franke A, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease [J]. Cell, 2008, 134(5): 743756.
|
10. |
Kabashima K, Saji T, Murata T, et al. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut [J]. J Clin Invest, 2002, 109(7): 883893.
|
11. |
Libioulle C, Louis E, Hansoul S, et al. Novel Crohn disease locus identified by genomewide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4 [J]. PLoS Genet, 2007, 3(4): e58.
|
12. |
VijayKumar M, Sanders CJ, Taylor RT, et al. Deletion of TLR5 results in spontaneous colitis in mice [J]. J Clin Invest, 2007, 117(12): 39093921.
|
13. |
Niess JH, Brand S, Gu X, et al. CX3CR1mediated dendritic cell access to the intestinal lumen and bacterial clearance [J]. Science, 2005, 307(5707): 254258.
|
14. |
Johansson C, Kelsall BL. Phenotype and function of intestinal dendritic cells [J]. Semin Immunol, 2005, 17(4): 284294.
|
15. |
Izcue A, Coombes JL, Powrie F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation [J]. Immunol Rev, 2006, 212: 256271.
|
16. |
Elson CO, Cong Y, McCracken VJ, et al. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota [J]. Immunol Rev, 2005, 206: 260276.
|
17. |
Hue S, Ahern P, Buonocore S, et al. Interleukin23 drives innate and T cellmediated intestinal inflammation [J]. J Exp Med, 2006, 203(11): 24732483.
|
18. |
Kobayashi T, Okamoto S, Hisamatsu T, et al. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease [J]. Gut, 2008, 57(12): 16821689.
|
19. |
Velázquez P, Wei B, Braun J. Surveillance B lymphocytes and mucosal immunoregulation [J]. Springer Semin Immunopathol, 2005, 26(4): 453462.
|
20. |
Lodes NJ, Cong YZ, Elson CO, et al. Bacterial flagellin is a dominant antigen in Crohn disease [J]. J Clin Invest, 2004, 113(9): 12961306.
|
21. |
Jaensson E, UronenHansson H, Pabst O, et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans [J]. J Exp Med, 2008, 205(9): 21392149.
|
22. |
Hatoum OA, Heidemann J, Binion DG. The intestinal microvasculature as a therapeutic target in inflammatory bowel disease [J]. Ann N Y Acad Sci, 2006, 1072: 7897.
|
23. |
Abraham C, Cho JH. Functional consequences of NOD2 (CARD15) mutations [J]. Inflamm Bowel Dis, 2006, 12(7): 641650.
|
24. |
Kobayashi KS, Chamaillard M, Ogura Y, et al. Nod2dependent regulation of innate and adaptive immunity in the intestinal tract [J]. Science, 2005, 307(5710): 731734.
|
25. |
Lesage S, Zouali H, Cézard JP, et al. CARD15/NOD2 mutational analysis and genotypephenotype correlation in 612 patients with inflammatory bowel disease [J]. Am J Hum Genet, 2002, 70(4): 845857.
|
26. |
Economou M, Trikalinos TA, Loizou KT, et al. Differential effects of NOD2 variants on Crohn’s disease risk and phenotype in diverse populations: a metaanalysis [J]. Am J Gastroenterol, 2004, 99(12): 23932404.
|
27. |
Watanabe T, Asano N, Murray PJ, et al. Muramyl dipeptide activation of nucleotidebinding oligomerization domain 2 protects mice from experimental colitis [J]. J Clin Invest, 2008, 118(2): 545559.
|
28. |
Rioux JD, Xavier RJ, Taylor KD, et al. Genomewide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis [J]. Nat Genet, 2007, 39(5): 596604.
|
29. |
Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the autophagy gene ATG16L1 in mouse and human intestinal Paneth cells [J]. Nature, 2008, 456(7219): 259263.
|
30. |
Dalal SR, Kwon JH. The role of MicroRNA in inflammatory bowel disease [J]. Gastroenterol Hepatol (NY), 2010, 6(11): 714722.
|
31. |
Wu F, Zikusoka M, Trindade A, et al. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide2 alpha [J]. Gastroenterology, 2008, 135(5): 16241635.
|
32. |
Wu F, Zhang S, Dassopoulos T, et al. Identification of microRNAs associated with ileal and colonic Crohn’s disease [J]. Inflamm Bowel Dis, 2010, 16(10): 17291738.
|
33. |
Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid [J]. Science, 2007, 317(5835): 256260.
|
34. |
Nedjic J, Aichinger M, Emmerich J, et al. Autophagy in thymic epithelium shapes the Tcell repertoire and is essential for tolerance [J]. Nature, 2008, 455(7211): 396400.
|
35. |
Glocker EO, Kotlarz D, Boztug K, et al. Inflammatory bowel disease and mutations affecting the interleukin10 receptor [J]. N Engl J Med, 2009, 361(21): 20332045.
|
36. |
Izcue A, Hue S, Buonocore S, et al. Interleukin23 restrains regulatory T cell activity to drive T celldependent colitis [J]. Immunity, 2008, 28(4): 559570.
|
37. |
Saruta M, Yu QT, Avanesyan A, et al. Phenotype and effector function of CC chemokine receptor 9expressing lymphocytes in small intestinal Crohn’s disease [J]. J Immunol, 2007, 178(5): 32933300.
|
38. |
Burton PR, Clayton DG, Cardon LR, et al. Association scan of 14 500 nonsynonymous SNPs in four diseases identifies autoimmunity variants [J]. Nat Genet, 2007, 39(11): 13291337.
|
39. |
Silverberg MS, Cho JH, Rioux JD, et al. Ulcerative colitisrisk loci on chromosomes 1p36 and 12q15 found by genomewide association study [J]. Nat Genet, 2009, 41(2): 216220.
|
40. |
Fernando MM, Stevens CR, Walsh EC, et al. Defining the role of the MHC in autoimmunity: a review and pooled analysis [J]. PLoS Genet, 2008, 4(4): e1000024.
|
41. |
Mannon PJ, Fuss IJ, Mayer L, et al. Antiinterleukin12 antibody for active Crohn’s disease [J]. N Engl J Med, 2004, 351(20): 20692079.
|
42. |
Sandborn WJ, Feagan BG, Fedorak RN, et al. A randomized trial of Ustekinumab, a human interleukin12/23 monoclonal antibody, in patients with moderatetosevere Crohn’s disease [J]. Gastroenterology, 2008, 135(4): 11301141.
|
43. |
Elson CO, Cong Y, Weaver CT, et al. Monoclonal antiinterleukin 23 reverses active colitis in a T cellmediated model in mice [J]. Gastroenterology, 2007, 132(7): 23592370.
|
44. |
Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease [J]. Nature, 2008, 453(7195): 620625.
|