Objective To investigate the clinical therapeutic effects on malignant spinal tumors treated by percutaneous vertebroplasty(PVP) under the guidance of the digital subtraction angiography(DSA). Methods A retrospective analysis was performed in 196 patients (99 males and 97 females, aged 23-85 years, averaged 60.4 years) with malignant spinal tumors, who underwent the PVP treatment combined with standard chemotherapy and other comprehensive treatment from January 2002 to January 2005. The malignant spinal tumors had their origins as follows: lung cancer (66 cases), breast cancer (55 cases), liver cancer (19 cases), colon cancer (15 cases), stomach cancer (9 cases), prostate cancer (12 cases), multiple myeloma (16 cases), and malignant lymphoma of the spine (4 cases).The metastatic tumors involved the cervical vertebra (32 cases), thoracic vertebra (93 cases), lumbar vertebra (71 cases), and spinal column, including 1 vertebral segment (135 cases), 2 segments (50 cases), and more than 3 segments (11 cases). During the follow-up survey, changes in the visual analogue pain scale(VAS) and changes in the X-ray measurements of the average anterior height, midline height, and posterior height of the diseased vertebra were observed. Results The follow-up for 6 months to 3 years revealed that the percutaneous vertebroplasty on279 vertebral segments had a success with an operational success rate of 100%. Bone cement was injected into the lesions 1-9 ml per segment of the spine. The postoperative X-ray and CT evaluations revealed that spinal stabilization was obtained in all the patients. After operation, 193(98.5%)patients had an obvious decrease or disappearance of the pain in the lower back, and only 3 (1.5%) patients had no obvious improvement in the pain. There was a significant statist-ical difference in the VAS scores between before operation and after operation (Plt;0.05). There were also significant statistical differences in the average anterior height of the diseased vertebra between before operation and after operation(15.71±2.80 mm vs 16.61±3.01 mm), in the midline height(13.65±2.93 mm vs 14.52±2.72 mm), and in the posterior height(23.67±2.81 mm vs 23.70±3.13 mm,Plt;0.05). The patients with lung or liver cancer had a mean survival time of 9 monthsafter PVP; the patients with breast cancer, stomach cancer, prostate cancer, lymphoma, or other metastatic tumors had a mean survival time of 18 months. The patients with multiple myeloma had a mean survival time of 27 months. The differences were statistically different (Plt;0.01). Conclusion PVP under the guidance of the DSA is an easier operation witha small wound and few complications. It can effectively alleviate the patient’s pain due to metastatic spinal tumor, stabilize the spine, improve the patient’s quality of life, and reduce the incidence of paraplegia.
【摘要】 目的 探讨CT引导下经椎弓根穿刺活检对椎体病变的诊断价值及可行性。 方法 回顾性分析2009年5月—2010年4月42例椎体病变患者经椎弓根穿刺活检的穿刺活检方法、病理结果、最终诊断及穿刺并发症。 结果 患者总穿刺准确率为95.2%(40/42)。其中恶性病变的穿刺准确率为94.3%(33/35),良性病变穿刺准确率为100%(7/7);所有患者均未发生严重穿刺并发症。 结论 CT引导下经椎弓根穿刺活检诊断椎体病变有安全可靠、准确性高等特点。【Abstract】 Objective To explore the value and the feasibility of CT guided transpedicular biopsy in diagnosing vertebral body lesions. Methods From May 2009 to April 2010, 42 patients with vertebral body lesions underwent CT guided transpedicular biopsy. The clinical data including the puncture method, pahtological resutls, final diagnosis, and the pucture complications were retrospectively analyzed. Results The total accuracy rate of the puncture was 95.2%(40/42). The accuracy rate of the puncture was 94.3% (33/35) for malignant lesions and 100.0% (7/7) for benign lesions. No complication occurred. Conclusion CT guided transpedicular biopsy is very helpful in diagnosing vertebral body lesions with high accuracy and fewer complications.
ObjectiveTo observe the clinical effect of the ophthalmic artery branch retrograde interventional therapy for central retinal artery occlusion (CRAO). MethodsFourteen CRAO patients (14 eyes) were enrolled in this study, including 8 males and 6 females. The age was ranged from 35 to 80 years old,with an average of (56.7±20.3) years. The duration of occurrence after the onset was 9 to 72 hours, with a mean of 22 hours. There were 4 eyes with vision of no light perception, 5 eyes with light perception and 5 eyes with hand movement. The intraocular pressure was ranged from 14-20 mmHg (1 mmHg=0.133 kPa), with an average of 19 mmHg. All the patients received the treatment of ophthalmic artery branch retrograde interventional therapy according to the indications and contraindications of thrombolytic therapy in acute cerebral infraction patients. Micro catheters was inserted into the exposed arteries from a skin incision below the eyebrow under guidance of digital subtraction angiography (DSA), urokinase (total 0.4 million U) and papaverine 30 mg were injected into the arteries. After artery thrombolysis, the changes of DSA, filling time of retinal artery and its branches on fluorescence fundus angiography (FFA) within 48 hours and the visual acuity were observed. According to the visual acuity of post-treatment and pre-treatment, the therapeutic effects on vision were defined as effective markedly (improving 3 lines or more), effective (improving 2 lines) and no effect (change within 1 line or a decline). According to the arm-retinal circulation time (A-Rct) and filling time of retinal artery and its branches (FT) on fluorescence fundus angiography (FFA), the therapeutic effects on retinal circulation were defined as effective markedly (A-Rct 15 s, FT 2 s), effective (A-Rct was improved but in the range of 16-20 s, FT was in 3-8 s) and no effect (A-Rct was improved but 21 s, FT 9 s). The follow up ranged from 5 to 21days, with a mean of 6 days. The related local or systemic complications were recorded. ResultsOphthalmic arterial catheterization under DSA was successful in all 14 eyes. After intermittent injection of drugs, ophthalmic artery and internal carotid artery displayed good images in DSA. The results showed enlargement of ophthalmic artery and its branches after injection of thrombolytic drugs by micro catheters. The circulation time in ophthalmic artery is speed up for 2 s before thrombolysis in 5 eyes, 3 s in 6 eyes, and 4 s in 3 eyes. Within 48 hours after thrombolysis treatment, the filling time of retinal artery and its branches on FFA was significantly increased than that of before interventional therapy. The retinal circulation was effective markedly in 8 eyes (57.1%), effective in 4 eyes (28.6%) and no effect in 2 eyes (14.3%). The vision changes showed effective markedly in 6 eyes (42.9%), effective in 6 eyes (42.9%), no effect in 2 eyes (14.2%). There was no abnormal eye movements, vitreous hemorrhage and incision hematoma, intracranial hemorrhage, cerebral embolism, and other local and systemic adverse effectives during the follow-up. ConclusionsThe ophthalmic artery branch retrograde interventional therapy in the treatment for CRAO can improve retinal circulation and vision. And there is no related local or systemic complications.
ObjectiveTo observe the effect of interventional thrombolytic therapy for central retinal artery occlusion (CRAO) with ipsilateral internal carotid artery occlusion via supratrochlear artery retrogradely or external carotid artery anterogradely.MethodsNine CRAO patients (9 eyes) were enrolled in this study, including 5 males and 4 females. The mean age was (45.2±18.1) years. The mean onset duration was 24 hours. There were 4 eyes with vision of no light perception, 3 eyes with light perception and 2 eyes with hand movement. Fundus fluorescein angiography (FFA) examination showed that the retinal artery was filled with delayed fluorescence. The peak of fluorescence was seen in the anterior part of the artery, and some of the eyes showed retrograde filling. The arm-retinal circulation time (A-Rct) was ≥35 s in 4 eyes, ≥35 s - <25 s in 5 eyes. The filling time of retinal artery and its branches (FT) was ≥15 s in 2 eyes, ≥12 s - <15 s in 3 eyes, ≥9 s - <12 s in 4 eyes. All the patients received the treatment of interventional thrombolytic therapy via supratrochlear artery retrogradely (8 eyes) or external carotid artery anterogradely (1 eye) according to the indications and contraindications of thrombolytic therapy in acute cerebral infraction patients. Urokinase (0.4 million U in total) was intermittently injected into the arteries. After artery thrombolysis, the changes of digital subtraction angiography (DSA), filling time of retinal artery and its branches on FFA within 24 hours and the visual acuity were observed. According to the A-Rct and FT on FFA, the therapeutic effects on retinal circulation were defined as effective markedly (A-Rct≤15 s, FT≤2 s) , effective (A-Rct was improved but in the range of 16 - 20 s, FT was in 3 - 8 s) and no effect (A-Rct was improved but ≥21 s, FT≥9 s). The related local or systemic complications were recorded.ResultsAfter the injection of urokinase into the catheter, the ophthalmic artery and its branches were increased in 6 eyes (66.7%), and the development of the eye ring was significantly more than that of the eyes before thrombolysis. The circulation time in ophthalmic artery was speeded up for 2 s before thrombolysis in 3 eyes, 3 s in 3 eyes, and 4 s in 2 eyes. Within 24 hours after thrombolysis treatment, the A-Rct was significantly decreased than that of before interventional therapy. The retinal circulation was effective markedly in 4 eyes (44.4%), effective in 4 eyes (44.4%) and no effect in 1 eyes (11.2%) . The vision was improved 3 lines in 4 eyes (44.4%), 2 lines in 3 eyes (33.3%), 1 line in 1 eye (11.2%) and no change in 1 eye (11.2%). There were no abnormal eye movements, vitreous hemorrhage and incision hematoma, intracranial hemorrhage, cerebral embolism, and other local and systemic adverse effectives during the follow-up.ConclusionsThe interventional thrombolytic therapy via supratrochlear artery retrogradely or external carotid artery anterogradely for CRAO with the ipsilateral internal carotid artery occlusion can improve retinal circulation and vision. There are no related local or systemic complications.