Objective To investigate the effects of chitosan/polyvinyl alcohol (PVA) nerve conduits for repairing radial nerve defect in Macaques. Methods Twelve adult Macaques weighing 3.26-5.35 kg were made the models of radial nerve defect (2 cm in length) and were randomly divided into 3 groups according to nerve grafting, with 4 Macaques in each group. Chitosan/PVA nerve conduit, non-graft, and autografts were implanted in the defects in groups A, B, and C, respectively. And the right radial nerves were used as normal control. At 8 months postoperatively, the general observation,electrophysiological methods, and histological examination were performed. Results At 8 months postoperatively, theregenerated nerve bridged the radial nerve defect in group A, but no obvious adhesion was observed between the tube and the peripheral tissue. The regenerated nerve had not bridged the sciatic nerve defect in group B. The adhesions between the implanted nerve and the peri pheral tissue were significant in group C. Compound muscle action potentials (CMAP) were detected in group A and group C, and no CMAP in group B. Peak ampl itude showed a significantly higher value in normal control than in groups A and C (P lt; 0.05), but there was no significant difference between groups A and C (P gt; 0.05). Nerve conduction velocity and latency were better in normal control than in groups A and C, and in group C than in group A, all showing significant differences (Plt; 0.05). The density of myl inated fibers in groups A and C was significantly lower than that in normal control (P lt; 0.05), but there was no significant difference between groups A and C (P gt; 0.05). The diameter and the myel in sheath thickness of the myl inated fibers in normal control were significantly higher than those in groups A and C, and in group C than in group A, all showing significant differences (P lt; 0.05). Conclusion The chitosan/PVA nerve conduits can promote the peripheral nerve regeneration, and may promise alternative to nerve autograft for repairing peripheral nerve defects.
Objective To verify the technics of inactivating/removing pathogens in medical chitosan derived from shrimp shell. Methods Possible pathogen species were included according to the raw material of shrimp shell used in production, then bacillus cereus, porcine parvovirus (PPV) and pseudorabies virus (PRV) were selected as indicator pathogens.Pathogen solution was prepared in accordance with Technical Standard for Disinfection. The processing procedure of medical chitosan was analyzed to determine whether the alkal ization of chitin and the filter steril ization of chitosan were capable of inactivating/removing pathogens and their efficiencies were tested. Results Bacillus cereus was removed by 8 184 cfu/ mL after alkal ization and 30 818 cfu/mL after filter steril ization. The average logarithm inactivation value (LIV) of PPV and PRV after alkal ization were equal to or above 4.76 logTCID50/0.1 mL and 6.67 logTCID50/0.1 mL, respectively, and their average LIV after filter steril ization were 2.25 logTCID50/0.1 mL and 3.04 logTCID50/0.1 mL. The alkal ization of chitin inactivated/removed indicator pathogens effectively, while the filter steril ization of chitosan removed bacterial effectually but could not inactivate viruses completely. Conclusion The alkal ization of chitin can be used as the technics of inactivating/removing pathogens during the preparation process of medical chitosan to guarantee the safety of the product.
To observe the effect of chitosan/alginate (CTS/ALG) dressings on wound immersed in seawater. Methods Twenty-five healthy SD rats weighing 250-300 g were used to establ ish skin wound model through cutting 1.8 cm circle-shaped wound along spine bilaterally. The left side served as experimental group, and the right side as control group. The wounds were immersed in the prepared artificial seawater for 1 hour, then the experimental group was treated with CTS/ALG dressings, while the control group was treated with sterile gauze. Gross observation was performed andwound heal ing time was recorded. At 3, 5, 7, 10 and 12 days after operation, 2 cm × 2 cm skin tissues including the wounds were removed and underwent HE staining and immunohistochemistry staining using Envision method. Histological change of wound and expression of EGF receptor (EGFR) and bFGF were observed. Results In the experimental group, wound inflammatory response was sl ight and incrustation shrinked faster, while the incrustation in the control group shrinked slowly. The wound heal ing time of the experimental group and the control group was (11.68 ± 0.57) and (12.51 ± 0.54) days, respectively, suggesting there was a significant difference between two groups (P lt; 0.05). In the experimental group, granulation tissue prol iferation, cell infiltration, collagen tissue prol iferation, wound shrinkage and epithel ization appeared at 3 days after operation; regularly l ined collagen tissue, complete epithel ization and occurrence of skin appendages were observed at 10 days after operation; complete wound heal ing was noted at 12 days after operation; while in the control group, at the corresponding time point, late cell infiltration and epithel ization were observed and granulation tissue with ulcer was noted. Immunohistochemistry observation: high expression of bFGF in vascular endothel ial cells and interstitial fibroblasts and high expression of EGFR in vascular endothel ial cells were observed in the experimental group at 3 and 5 days after operation, and their expressions were low at 7, 10 and 12 days after operation; while in the control group, there were no or low expression of bFGF and EGFR at the same time point. Conclusion CTS/ALG dressings can promote the heal ing of wound immersed in seawater, but its mechanism needsfurther study.
【Abstract】 Objective To study the outcome of wound-heal ing hydrogel in treating chronic venous ulcer of lowerextremities so as to find a new therapy. Methods From April 2007 to September 2007, 60 patients with chronic venous ulcer of lower extremities were randomly assigned to wound-heal ing hydrogel group (group A, 30 cases) and control group (normal sal ine, group B, 30 cases). In group A, there were 24 males and 6 females, aging (57.3 ± 6.8) years; the disease course was (2.9 ± 0.7) years; and the ulcer area was (3.4 ± 0.6) cm2. In group B, there were 20 males and 10 females, aging (60.1 ± 7.4) years; the disease course was (3.3 ± 0.9) years; and the ulcer area was (3.1 ± 0.4) cm2. There were no differences in age, area of ulcer and course of disease between two groups (P gt; 0.05). The area of ulcer was measured every week after the treatment, and the effect of treatmentwas evaluated after 15 days. Results The ulcer area of 7 days and 14 days after treatment was (2.6 ± 0.7) and (1.1 ± 0.2) cm2 in group A, and (2.8 ± 0.6) and (2.3 ± 0.7) cm2 in group B, respectively; showing no statistically significant differences 7 days after treatment (P gt; 0.05), and showing statistically significant difference 14 days after treatment between two groups (P lt; 0.05).The average heal ing time was (12.0 ± 1.7) days in group A, and (31.0 ± 2.9) days in group B, respectively, showing statisticallysignificant difference (P lt; 0.01). The results were excellent, good, fair and poor in 16, 9, 4 and 1 of group A , and were in 3, 9, 14 and 4 of group B, respectively; showing statistically significant difference (P lt; 0.01). Conclusion Wound-heal ing hydrogel is effective in treating chronic venous ulcer of lower extremities.
Objective To investigate the effects of chitosan on the cell cycle of the human fibroblasts and on the Ki-67 antigen expression in vitro and to investigate the mechanism of chitosan preventing the postoperative tissue adhesion. Methods The cultured fibroblasts were treated for 48 hours with 0,0.01,0.1,1.0,10.0 mg/ml of chitosan, respectively;then, the cell cycle of the fibroblasts was measured by the flow cytometry. The cultured fibroblasts were treated for 24 hours with the chitiosan at the above concentrations; then, the Ki-67 antigen in the cell nucleus was detected with the immunohistochemical staining toobserve its expression. Results The growth of the fibroblastswas obviously suppressed by chitosan, especially in the cell morphology. When the concentrations of chitosan were 1.0 mg/ml and 10.0 mg/ml, the percentages of the fibroblasts in the proliferation stage were 32.3%±5.2% and 14.7%±2.9%, respectively,which were significantly smaller than the percentage of the fibroblasts when the concentration of chitosan was 0 mg/ml (the control group) (41.9%±5.8%, P<0.05). When the concentrations were 0.01 mg/ml and 0.1 mg/ml, the percentages of the fibroblasts in the proliferation stage were 39.0%±6.0% and 35.5%±3.4%, respectively, which were smaller than that of the control, but not significantly different from that of the control (P>0.05). When the concentrations of chitosan were 0.1 mg/ml,1.0 mg/ml and 10.0 mg/ml, the percentages of the fibroblasts that had the positiveKi-67 antigen were 37.3%±3.4%, 30.5%±6.2% and 17.8%±3.0%,respectively, which were significantly smaller than that of the control (57.6%±8.9%, P<0.05). When the concentration was 0.01 mg/ml, the percentage of the fibroblasts that had the positive Ki-67 antigen was 54.1%±8.0%, which was smaller than that of the control, but not significantly different from that of the control (P>0.05). ConclusionChitosan can inhibit the proliferation of the fibroblasts and increase the percentage of the fibroblasts in the quiescent stage, which can be considered as one of the mechanisms that chitosan can prevent the postoperative tissueadhesion.
Objective To investigate the clinical effect of chitosan in prevention of knee dysfunction due to adhesion after operation for patellar fracture. Methods From March to October 1999, 40 cases of patellar fracturewere treated by internal fixation, with intraarticular injection of 2% chitosan in only 24 cases after fixation and with no chitosan injection in 16 cases(control group). The function of the knee joint, including extension and flexion, was evaluated 1month and 1 year after operation respectively. Results One month after operation, the knees with chitosan injection could actively move in the average range of 104°±23°, and the knees in the control group could move in the average range of72°±16°, which showed significant difference between two groups(P<0.01); 1 year after operation, the range of movement of the knees with injection was 165°±38° on average, and that of the knees in the control group was 110°± 31°, which also indicated significant difference between two groups (P<0.05). Conclusion Medical chitosan could effectively prevent or reduce the post-operative adhesion of knee joint after patellar operation.
OBJECTIVE To study the clinical effect of chitosan on prevention of elbow adhesion after elbow arthrolysis. METHODS Twenty six patients with elbow ankylosis were performed elbow arthrolysis, which divided into two groups, in chitosan group, 12 patients were injected 2% chitosan into the elbow joint cavity, and no chitosan used in the other 14 patients as control group. The average range of extension and flexion of elbow joint was detected to evaluate the clinical results. RESULTS All patients were followed up 8 to 51 months, averaged 24 months. In the chitosan group, the average range of extension and flexion of elbow joint was restored to 92.9 degrees +/- 20.9 degrees, with an average increase of 55.0 degrees +/- 15.9 degrees compared with preoperation. In the control group, the average range of extension and flexion of elbow joint was restored to 75.4 degrees +/- 17.5 degrees, with an average increase of 38.2 degrees +/- 11.9 degrees. The outcome showed significant difference between the chitosan group and the control group (P lt; 0.01). CONCLUSION Chitosan can prevent or reduce elbow adhesion after elbow arthrolysis.
OBJECTIVE: To investigate the effects of chitosan membrane on tendon adhesion and healing and obtain experimental data for clinical use in preventing postoperative tendon adhesion. METHODS: The long flexor tendon of 55 adult legborn hens were cut and sutured encapsulated by chitosan membrane. Movement and anti-tension capability of tendon were assessed at 2, 4, 6, 8 and 10 weeks after operation by SWD-10 type tendon stretcher. Tendon healing and adhesion were observed with light microscope. RESULTS: Tendon healing could be effected by chitosan membrane within 4 weeks, and tendon anti-tension strength was increased after 4 weeks. CONCLUSION: Chitiosan membrane possesses the following characteristics: no side effects, good permeability, resolvable, absorbable and selective inhibition the growth of fibroblast. It is a desirable biological material to prevent tendon adhesion.
In order to study the effect of chitin and chitosan on the growth of Schwann cell (SC) of rats in vitro, the SC was isolated from sciatic nerve and brachial plexus of new-born rats. After the enzymatic and mechanical dissociation, the cell suspension was vaccinated on chitin membrane and chitosan fluid-coated glass coverslips. Then, the growth of SC was examined at 1, 3, 7 days after culture under light microscope and scanning electron microscope. The results showed that 94 percent of the cell grown from was SC and only 6% was fibroblast (FB), while that of the control SC 71% and FB 29% in population. The number of SC in chitosan suspension was more than that in chitin. Therefore, the conclusion was that the chitin and chitosan was histocompatible to SC, and chitosan suspension was superior to chitin, and both could inhibit the growth of fibroblast.