In order to improve the accuracy of blood pressure measurement in wearable devices, this paper presents a method for detecting blood pressure based on multiple parameters of pulse wave. Based on regression analysis between blood pressure and the characteristic parameters of pulse wave, such as the pulse wave transit time (PWTT), cardiac output, coefficient of pulse wave, the average slope of the ascending branch, heart rate, etc. we established a model to calculate blood pressure. For overcoming the application deficiencies caused by measuring ECG in wearable device, such as replacing electrodes and ECG lead sets which are not convenient, we calculated the PWTT with heart sound as reference (PWTTPCG). We experimentally verified the detection of blood pressure based on PWTTPCG and based on multiple parameters of pulse wave. The experiment results showed that it was feasible to calculate the PWTT from PWTTPCG. The mean measurement error of the systolic and diastolic blood pressure calculated by the model based on multiple parameters of pulse wave is 1.62 mm Hg and 1.12 mm Hg, increased by 57% and 53% compared to those of the model based on simple parameter. This method has more measurement accuracy.
According to the development status of wearable technology and the demand of intelligent health monitoring, we studied the multi-function integrated smart watches solution and its key technology. First of all, the sensor technology with high integration density, Bluetooth low energy (BLE) and mobile communication technology were integrated and used in develop practice. Secondly, for the hardware design of the system in this paper, we chose the scheme with high integration density and cost-effective computer modules and chips. Thirdly, we used real-time operating system FreeRTOS to develop the friendly graphical interface interacting with touch screen. At last, the high-performance application software which connected with BLE hardware wirelessly and synchronized data was developed based on android system. The function of this system included real-time calendar clock, telephone message, address book management, step-counting, heart rate and sleep quality monitoring and so on. Experiments showed that the collecting data accuracy of various sensors, system data transmission capacity, the overall power consumption satisfy the production standard. Moreover, the system run stably with low power consumption, which could realize intelligent health monitoring effectively.
Motor dysfunction is the main clinical symptom and diagnosis basis of patients with Parkinson’s disease (PD). A total of 30 subjects were recruited in this study, including 15 PD patients (PD group) and 15 healthy subjects (control group). Then 5 wearable inertial sensor nodes were worn on the bilateral upper limbs, lower limbs and waist of subjects. When completing the 6 paradigm tasks, the acceleration and angular velocity signals from different parts of the body were acquired and analyzed to obtain 20 quantitative parameters which contain information about the amplitude, frequency, and fatigue degree of movements to assess the motor function. The clinical data of the two groups were statistically analyzed and compared, and then Back Propagation (BP) Neural Network was used to classify the two groups and predict the clinical score. The final results showed that most of the parameters had significant difference between the two groups, ten times of 5-fold cross validation showed that the classification accuracy of the BP Neural Network for the two groups was 90%, and the predictive accuracy of Hoehn-Yahr (H-Y) staging and unified PD rating scale (UPDRS) Ⅲ score of the patients were 72.80% and 68.64%, respectively. This study shows the feasibility of quantitative assessment of motor function in PD patients using wearable sensors, and the quantitative parameters obtained in this paper may have reference value for future related research.
This paper aims to study the accuracy of cardiopulmonary physiological parameters measurement under different exercise intensity in the accompanying (wearable) physiological parameter monitoring system. SensEcho, an accompanying physiological parameter monitoring system, and CORTEX METALYZER 3B, a cardiopulmonary function testing system, were used to simultaneously collect the cardiopulmonary physiological parameters of 28 healthy volunteers (17 males and 11 females) in various exercise states, such as standing, lying down and Bruce treadmill exercise. Bland-Altman analysis, correlation analysis and other methods, from the perspective of group and individual, were used to contrast and analyze the two types of equipment to measure parameters of heart rate and breathing rate. The results of group analysis showed that the heart rate and respiratory rate data box charts collected by the two devices were highly consistent. The heart rate difference was (−0.407 ± 3.380) times/min, and the respiratory rate difference was (−0.560 ± 7.047) times/min. The difference was very small. The Bland-Altman plot of the heart rate and respiratory rate in each experimental stage showed that the proportion of mean ± 2SD was 96.86% and 95.29%, respectively. The results of individual analysis showed that the correlation coefficients of the whole-process heart rate and respiratory rate data were all greater than 0.9. In conclusion, SensEcho, as an accompanying physiological parameter monitoring system, can accurately measure the human heart rate, respiration rate and other key cardiopulmonary physiological parameters under various sports conditions. It can maintain good stability under various sports conditions and meet the requirements of continuous physiological signal collection and analysis application under sports conditions.
The dynamic electrocardiogram (ECG) collected by wearable devices is often corrupted by motion interference due to human activities. The frequency of the interference and the frequency of the ECG signal overlap with each other, which distorts and deforms the ECG signal, and then affects the accuracy of heart rate detection. In this paper, a heart rate detection method that using coarse graining technique was proposed. First, the ECG signal was preprocessed to remove the baseline drift and the high-frequency interference. Second, the motion-related high amplitude interference exceeding the preset threshold was suppressed by signal compression method. Third, the signal was coarse-grained by adaptive peak dilation and waveform reconstruction. Heart rate was calculated based on the frequency spectrum obtained from fast Fourier transformation. The performance of the method was compared with a wavelet transform based QRS feature extraction algorithm using ECG collected from 30 volunteers at rest and in different motion states. The results showed that the correlation coefficient between the calculated heart rate and the standard heart rate was 0.999, which was higher than the result of the wavelet transform method (r = 0.971). The accuracy of the proposed method was significantly higher than the wavelet transform method in all states, including resting (99.95% vs. 99.14%, P < 0.01), walking (100% vs. 97.26%, P < 0.01) and running (100% vs. 90.89%, P < 0.01). The absolute error [0 (0, 1) vs. 1 (0, 1), P < 0.05] and relative error [0 (0, 0.59) vs. 0.52 (0, 0.72), P < 0.05] of the proposed method were significantly lower than the wavelet transform method during running state. The method presented in this paper shows high accuracy and strong anti-interference ability, and is potentially used in wearable devices to realize real-time continuous heart rate monitoring in daily activities and exercise conditions.
As a low-load physiological monitoring technology, wearable devices can provide new methods for monitoring, evaluating and managing chronic diseases, which is a direction for the future development of monitoring technology. However, as a new type of monitoring technology, its clinical application mode and value are still unclear and need to be further explored. In this study, a central monitoring system based on wearable devices was built in the general ward (non-ICU ward) of PLA General Hospital, the value points of clinical application of wearable physiological monitoring technology were analyzed, and the system was combined with the treatment process and applied to clinical monitoring. The system is able to effectively collect data such as electrocardiogram, respiration, blood oxygen, pulse rate, and body position/movement to achieve real-time monitoring, prediction and early warning, and condition assessment. And since its operation from March 2018, 1 268 people (657 patients) have undergone wearable continuous physiological monitoring until January 2020, with data from a total of 1 198 people (632 cases) screened for signals through signal quality algorithms and manual interpretation were available for analysis, accounting for 94.48 % (96.19%) of the total. Through continuous physiological data analysis and manual correction, sleep apnea event, nocturnal hypoxemia, tachycardia, and ventricular premature beats were detected in 232 (36.65%), 58 (9.16%), 30 (4.74%), and 42 (6.64%) of the total patients, while the number of these abnormal events recorded in the archives was 4 (0.63%), 0 (0.00%), 24 (3.80%), and 15 (2.37%) cases. The statistical analysis of sleep apnea event outcomes revealed that patients with chronic diseases were more likely to have sleep apnea events than healthy individuals, and the incidence was higher in men (62.93%) than in women (37.07%). The results indicate that wearable physiological monitoring technology can provide a new monitoring mode for inpatients, capturing more abnormal events and provide richer information for clinical diagnosis and treatment through continuous physiological parameter analysis, and can be effectively integrated into existing medical processes. We will continue to explore the applicability of this new monitoring mode in different clinical scenarios to further enrich the clinical application of wearable technology and provide richer tools and methods for the monitoring, evaluation and management of chronic diseases.
Lower limb ankle exoskeletons have been used to improve walking efficiency and assist the elderly and patients with motor dysfunction in daily activities or rehabilitation training, while the assistance patterns may influence the wearer’s lower limb muscle activities and coordination patterns. In this paper, we aim to evaluate the effects of different ankle exoskeleton assistance patterns on wearer’s lower limb muscle activities and coordination patterns. A tethered ankle exoskeleton with nine assistance patterns that combined with differenet actuation timing values and torque magnitude levels was used to assist human walking. Lower limb muscle surface electromyography signals were collected from 7 participants walking on a treadmill at a speed of 1.25 m/s. Results showed that the soleus muscle activities were significantly reduced during assisted walking. In one assistance pattern with peak time in 49% of stride and peak torque at 0.7 N·m/kg, the soleus muscle activity was decreased by (38.5 ± 10.8)%. Compared with actuation timing, the assistance torque magnitude had a more significant influence on soleus muscle activity. In all assistance patterns, the eight lower limb muscle activities could be decomposed to five basic muscle synergies. The muscle synergies changed little under assistance with appropriate actuation timing and torque magnitude. Besides, co-contraction indexs of soleus and tibialis anterior, rectus femoris and semitendinosus under exoskeleton assistance were higher than normal walking. Our results are expected to help to understand how healthy wearers adjust their neuromuscular control mechanisms to adapt to different exoskeleton assistance patterns, and provide reference to select appropriate assistance to improve walking efficiency.
Smart wearable devices play an increasingly important role in physiological monitoring and disease prevention because they are portable, real-time, dynamic and continuous.The popularization of smart wearable devices among people under high-altitude environment would be beneficial for the prevention for heart and brain diseases related to high altitude. The current review comprehensively elucidates the effects of high-altitude environment on the heart and brain of different population and experimental subjects, the characteristics and applications of different types of wearable devices, and the limitations and challenges for their application. By emphasizing their application values, this review provides practical reference information for the prevention of high-altitude disease and the protection of life and health.
Sleep-related breathing disorder (SRBD) is a sleep disease with high incidence and many complications. However, patients are often unaware of their sickness. Therefore, SRBD harms health seriously. At present, home SRBD monitoring equipment is a popular research topic to help people get aware of their health conditions. This article fully compares recent state-of-art research results about home SRBD monitors to clarify the advantages and limitations of various sensing techniques. Furthermore, the direction of future research and commercialization is pointed out. According to the system design, novel home SRBD monitors can be divided into two types: wearable and unconstrained. The two types of monitors have their own advantages and disadvantages. The wearable devices are simple and portable, but they are not comfortable and durable enough. Meanwhile, the unconstrained devices are more unobtrusive and comfortable, but the supporting algorithms are complex to develop. At present, researches are mainly focused on system design and performance evaluation, while high performance algorithm and large-scale clinical trial need further research. This article can help researchers understand state-of-art research progresses on SRBD monitoring quickly and comprehensively and inspire their research and innovation ideas. Additionally, this article also summarizes the existing commercial sleep respiratory monitors, so as to promote the commercialization of novel home SRBD monitors that are still under research.