Objective To investigate the effect of dynamic compression and rotation motion on chondrogenesis of the 3rd passage cell-loaded three-dimensional scaffold in a joint-specific bioreactor in vitro so as to provide theoretical basis of the autologous chondrocyte transplantation in clinical practice. Methods Primary chondrocytes were isolated and cultured from the knee cartilage of 3-4 months old calves. The 3rd passage cells were seeded onto fibrin-polyurethane scaffolds (8 mm × 4 mm). Experiment included 5 groups: unloaded culture for 2 weeks (group A), direct load for 2 weeks (group B), unloaded culture for 4 weeks (group C), direct load for 4 weeks (group D), and unload for 2 weeks followed by load for 2 weeks (group E). The cell-scaffold was incubated in incubator (unload) or in a joint-specific bioreactor (load culture). At different time points, the samples were collected for DNA and glycosaminoglycan (GAG) quantification detect; mRNA expressions of chondrogenic marker genes such as collagen type I, collagen type II, Aggrecan, cartilage oligomeric matrix protein (COMP), and superficial zone protein (SZP) were detected by real-time quantitative PCR; and histology observations were done by toluidine blue staining and immunohistochemistry staining. Results No significant difference was found in DNA content, GAG content, and the ratio of GAG to DNA among 5 groups (P gt; 0.05). After load, there was a large number of GAG in the medium, and the GAG significantly increased with time (P lt; 0.05). The mRNA expression of collagen type I showed no significant difference among 5 groups (P gt; 0.05). The mRNA expression of collagen type II in group B was significantly increased when compared with group A (P lt; 0.01), and groups D and E were significantly higher than group C (P lt; 0.01); the mRNA expression of Aggrecan in groups D and E were significantly increased when compared with group C (P lt; 0.01), and group E was significantly higher than group D (P lt; 0.01); the mRNA expression of COMP in group B was significantly increased when compared with group A (P lt; 0.01), and group E was significantly higher than group C (P lt; 0.01); and the mRNA expression of SZP in group E was significantly increased when compared with groups C and D (P lt; 0.05). The toluidine blue staining and immunohistochemistry staining displayed that synthesis and secretion of GAG could be enhanced after load; no intensity changes of collagen type I and collagen type II were observed, but intensity enhancement of Agrrecan was seen in groups D and E. Conclusion Different dynamic loads can promote chondrogenesis of the 3rd passage chondrocytes. Culture by load after unload may be the best culture for chondrogenesis, while the 3rd passage chondrocytes induced by mechanical load hold less capacity of chondrogenesis.
【Abstract】 Objective To explore the midterm efficacy of superelastic cage implantation for the treatment of osteonecrosisof femoral head (ONFH). Methods From July 1996 to January 1998, 54 patients (75 hips) of ONFH were treatedwith superelastic cage and followed up. Among 54 patients, 5 patients were lost to follow up and 3 patients were dead of myocardialinfarction, renal failure and gastric cancer, respectively. Forty-six patients completed follow up including 32 males and14 females, aged from 21 to 61 with an average of 39 years old. Twenty-nine hips were classified as Ficat Stage Ⅱ and 36 as StageⅢ . Harris score was 58.20 ± 13.82. All patients were evaluated both cl inically and radiographically. Results Postoperatively,forty-six patients (65 hips) were followed up for 86 to 125 months with an average of 8 years and 8 months. Harris score was 80.78 ± 18.77. Twenty-nine hips were rated excellent, 21 good, 2 fair and 13 poor.A total of 76.9% of overall cl inical results were rated as good or excellent. Eight hips (12.3%) with the cage broken were turned to total hip replacement. Radiographicevaluation: 16 hips (24.6%) rated as grade Ⅰ , 34 (52.3%) grade Ⅱ and 15 (23.1%) grade Ⅲ . Conclusion Superelastic cage implantation is one of alternative treatments for ONFH at early and midterm stages. However, long-term follow-up is needed to know whether it is able to cure ONFH and whether cages will be broken as time passes by.