Objective To investigate the feasibility of photochemical tissue bonding (PTB) technique in repairing limbal stem cell (LSC) deficiency and the effect on cornea wound healing. Methods LSCs were isolated from limbus of New Zealand rabbits by tissue block culture method, and then the LSCs of 2nd passage were cultured on de-epithelialized human amniotic membrane (HAM) for 3 weeks to prepare the HAM/LSC grafts. The LSC deficiency models of the left eyes were established by 0.5 mol/L NaOH in 24 New Zealand female rabbits, aged 3-4 months and weighing 1.5-2.0 kg. HAM/LSC grafts were used to repair the cornea wounds by sutures (suture group, n=12) or by PTB technique (PTB group, n=12). The gross was observed including the corneal transparency, erythema, and new blood vessel formation after surgery. At 3 and 28 days, the inflammatory cytokine of interleukin 1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α) were assayed by ELISA method; and the amount of new blood vessels were quantified by immunohistochemistry staining at 28 days. Results All animals survived to the end of the experiment. At 3 days, there was no obvious difference in the corneal transparency between 2 groups; at 28 days, the corneal transparency of PTB group was higher than that of suture group, and new blood vessels decreased. HE staining showed that mass inflammatory cells infiltrated between graft and cornea basal layer at 3 days, and no new blood vessel formed. inflammatory cells infiltration significantly decreased at 28 days in PTB group; the amount of new blood vessels was (2.0 ± 0.8)/ HP in PTB group and was (6.3 ± 1.3)/HP in suture group, showing significant difference (t=7.966, P=0.002). At 28 days, the concentrations of inflammatory cytokine of IL-1β, IL-6, and TNF-α in suture group were significantly higher than those in PTB group (P lt; 0.05); however, no significant differences were observed between 2 groups at 3 days (P gt; 0.05). Conclusion PTB technique can be used to fix HAM/LSC grafts, which can decrease inflammatory cell infiltration and new vessel formation, and improve the outcomes when compared with suture technique.
Objective To investigate the effectiveness and mechanism of recombinant human granulocyte-macrophage colony-stimulating factor (rhGMCSF) gel on wound debridement and healing of deep II thickness burn. Methods Between December 2008 and December 2010, 58 patients with deep II thickness burn, accorded with the inclusive criteria, were collected. There were 36 males and 22 females with an average age of 32.4 years (range, 12-67 years). The causes were hot liquid in 38 cases and fire in 20 cases. The time from injury to treatment was 1-3 days (mean, 2.1 days). In this randomized, double-blind, and self-control study, all patients were randomly divided into 2 groups, wounds were treated with rhGMCSF gel (test group) or gel matrix (control group). There was no significant difference in wound area between 2 groups (P gt; 0.05). The time of completed removal eschar and the percentage of removal-area of eschar were recorded at 2, 6, 10, 14, and 18 days during healing process. The time of wound healing was also recorded. Results Compared with control group, the necrotic tissues on the burn wound got soft in test group at 4 days after treatment. At 6 days, they loosened and eventually sloughed off. The wound bed presented in red and white, followed by rapidly growing granulation tissues. Except 18 days after treatment, there were significant differences in the percentage of removal-area of eschar between 2 groups (P lt; 0.05). The time of completed removal eschar in test group [(7.71 ± 2.76) days] was significantly shorter than that in control group [(14.71 ± 3.63) days] (t=13.726, P=0.000). The time of wound healing in test group was (18.41 ± 2.47) days, which was significantly shorter than that in control group [(23.58 ± 3.35) days] (t=15.763, P=0.000). Conclusion Compared with the gel matrix, the rhGMCSF gel may promote wound debridement and healing in deep II thickness burn.
Stroke is a disease that seriously affects the quality of life of patients. Its main characteristics are that the incidence rate is increasing year by year, the risk of death is high, and the prognosis of the disease is poor. For patients with acute cerebral artery occlusive ischemic stroke, intravenous thrombolysis alone has a low recanalization rate and poor long-term prognosis. With the development of interventional treatment technology for cerebrovascular disease, intravascular interventional treatment methods such as arterial thrombolysis, stent placement, and mechanical thrombectomy are more and more applied in the ultra-early stage of acute ischemic stroke. This article reviews the progress of mechanical thrombectomy in the treatment of cerebral artery occlusion in patients with acute ischemic stroke.