Electrical impedance tomography (EIT) is a non-radiation, non-invasive visual diagnostic technique. In order to improve the imaging resolution and the removing artifacts capability of the reconstruction algorithms for electrical impedance imaging in human-chest models, the HMANN algorithm was proposed using the Hadamard product to optimize multilayer artificial neural networks (MANN). The reconstructed images of the HMANN algorithm were compared with those of the generalized vector sampled pattern matching (GVSPM) algorithm, truncated singular value decomposition (TSVD) algorithm, backpropagation (BP) neural network algorithm, and traditional MANN algorithm. The simulation results showed that the correlation coefficient of the reconstructed images obtained by the HMANN algorithm was increased by 17.30% in the circular cross-section models compared with the MANN algorithm. It was increased by 13.98% in the lung cross-section models. In the lung cross-section models, some of the correlation coefficients obtained by the HMANN algorithm would decrease. Nevertheless, the HMANN algorithm retained the image information of the MANN algorithm in all models, and the HMANN algorithm had fewer artifacts in the reconstructed images. The distinguishability between the objects and the background was better compared with the traditional MANN algorithm. The algorithm could improve the correlation coefficient of the reconstructed images, and effectively remove the artifacts, which provides a new direction to effectively improve the quality of the reconstructed images for EIT.
Human society has entered the age of artificial intelligence(AI). Medical practice and education are undergoing profound changes. The government strongly advocates the application of AI in the field of education and it has been incorporated into the national strategy. The integration of medical education and AI technology is changing the paradigm of modern medical education. This paper introduces the current application status of AI in medical education, and analyzes the existing problems and proposes corresponding resolutions, so as to lay a foundation for promoting the integration of medical education and AI.