目的 通过比较白内障患者与正常人用两种方法测量的前房深度和眼轴长度值,观察IOL Master和接触式A型超声测量是否存在差别及其关联程度。 方法 选取2010年12月-2011年2月期间行白内障摘除加人工晶状体植入术的年龄相关性白内障患者及除屈光不正外没有其他眼部病变的志愿者共89例。分别用IOL Maste和A型超声测量54例(96只眼)白内障患者和35例(70只眼)正常者的前房深度(ACD)和眼轴长度(AL),应用配对t检验对每组两种方法测得的ACD及AL值进行比较,并应用Pearson相关分析比较两种方法的相关性。应用独立样本t检验比较白内障组和正常者组间两种方法测得的差值是否不同。 结果 白内障组A型超声和IOL Master测得的ACD值分别是(2.83 ± 0.34)、(3.05 ± 0.39) mm,AL值分别是(23.93 ± 2.46)、(24.27 ± 2.57) mm,差异均有统计学意义(P<0.05);正常者组A型超声和IOL Master测得的ACD值分别是(3.16 ± 0.36)、(3.43 ± 0.46) mm,AL值分别是(24.16 ± 1.61)、(24.49 ± 1.62) mm,差异均有统计学意义(P<0.05)。两种测量方法的相关系数分别是rACD=0.823(P<0.05)和rAL= 0.995(P<0.05)。白内障组和正常者组两种方法测得的ACD差值分别是(0.23 ± 0.23)、(0.28 ± 0.30) mm;AL差值分别是(0.34 ± 0.27)、(0.33 ± 0.15) mm;两组间ACD和AL差值的比较,差异均无统计学意义(P=0.243,0.742)。 结论 不论是白内障组还是正常者组,用IOL Master测得的ACD及AL值均比A型超声测得的相应值高,但是两种方法测得的值高度相关。白内障组和正常者组用两种方法测得的差值相比无差别;在可测到ACD及AL值的情况下,两种测量方法的差值均不受晶状体密度的影响。
【摘要】 目的 探讨影响近视患者中央角膜曲率(Kmean)及球镜屈光度的因素。方法 2008年3月—8月,使用角膜地形图测量157例(313眼)近视患者Kmean和角膜后表面高度。用A超测量眼轴长度和中央角膜厚度,验光测出球镜屈光度。分析可能影响Kmean及球镜屈光度的多个因素。其中男79例(157眼),女78例(156眼);年龄18~45岁,中位年龄20岁。近视病程1~30年。近视球镜屈光度(-5.65±2.74)D。结果 眼轴长度、中央角膜厚度、角膜后表面高度、眼压、Kmean和球镜屈光度分别为:(26.00±1.04)mm、(540.50±31.02)μm、(26.96±6.05)μm、(17.05±2.48)mm Hg(1 mm Hg=0.133 kPa)、(43.30±1.46)D、(-5.65±2.27)D。Kmean的影响因素有:眼轴长度(βi=-0.411,P=0.000)、性别(βi=-0.278,P=0.000)、中央角膜厚度(βi=-0.180,P=0.000)[(Kmean(D)=63.9790.599×眼轴长度(mm)-0.813×性别(男=1,女=0)-0.009×中央角膜厚度(μm),R=0.583,F=25.804,P=0.000)]。球镜屈光度的影响因素有:眼轴长度(βi=-0.911,P=0.000)、Kmean(βi=-0.477,P=0.000)和性别(βi=0.183,P=0.000)[球镜屈光度(D)=76.585-1.990×眼轴长度(mm)-0.714×Kmean(D)+0.801×性别(男=1,女=0),R=0.837,F=117.295,P=0.000)]。结论 眼轴长度、中央角膜厚度和性别都对Kmean有影响,眼轴增长是近视的主要原因。
ObjectiveTo investigate the prevalence and risk factors of tessellation fundus (TF) among Tianjin Medical University students with different refractive statuses. MethodsA cross-sectional study. From September to December 2019, 346 students from Tianjin Medical University were randomly selected and underwent slit-lamp examination, non-cycloplegic auto-refraction, subjective refraction, best-corrected visual acuity, ocular biometric measurement, and non-dilation fundus photography. The differences in the prevalence of TF in basic characteristics and ocular biometric parameters were compared. Based on the equivalent spherical (SE), refractive status was divided into the non-myopia group (SE>-0.50 D) and the myopia group (SE≤-0.50 D). The myopia group was further divided into mild myopia group (-3.00 D<SE≤-0.50 D), moderate myopia group (-6.00 D<SE≤-3.00 D), and high myopia group (SE≤-6.00 D). According to the axis length (AL), the subjects were divided into AL<24 mm group, 24-26 mm group, and >26 mm group. The logistic regression was used to analyze the risk factors affecting TF. Trend tests were performed for each risk factor and TF. ResultsOf the 346 subjects, 324 (93.6%, 324/346) were myopia, of whom 73 (21.1%, 73/346), 167 (48.3%, 167/346), and 84 (24.3%, 84/346) were mild myopia, moderate myopia, and high myopia, respectively; 22 (6.4%, 22/346) were non-myopia. There were 294 (85.0%, 294/346) students with TF in the macula, including 9 (40.91%, 9/22), 58 (79.45%, 58/73), 145 (86.83%, 145/167), and 82 (97.62%, 82/84) in non-myopia, low myopia, moderate myopia, and high myopia group, respectively; 52 (15.0%, 52/346) students were without TF in the macula. There were statistically significant gender differences (χ2=4.47), SE (t=6.29), AL (t=-8.29), anterior chamber depth (Z=-2.62), lens thickness (Z=-2.23), and average corneal radius (Z=-3.58) between students with and without TF in the macula (P<0.05). Spherical equivalent and axial length were independent risk factors for TF and its severity (P≤0.001). With an increasing degree of myopia, and increasing axial length, the risk of TF increased (P for trend<0.001). ConclusionsThe prevalence of TF is 85.0% among Tianjin Medical University students. TF is detected in the fundus of no myopia, mild myopia, moderate myopia and high myopia. The degree of myopia is higher, the AL is longer, the possibility of TF is higher.