The aim of the present study was to investigate the alternations of brain functional networks at resting state in the schizophrenia (SCH) patients using voxel-wise degree centrality (DC) method. The resting-state functional magnetic resonance imaging (rfMRI) data were collected from 41 SCH patients and 41 matched healthy control subjects and then analyzed by voxel-wise DC method. The DC maps between the patient group and the control group were compared using by two sample t test. The correlation analysis was also performed between DC values and clinical symptom and illness duration in SCH group. Results showed that compared with the control group, SCH patients exhibited significantly decreased DC value in primary sensorimotor network, and increased DC value in executive control network. In addition, DC value of the regions with obvious differences between the two groups significantly correlated to Positive and Negative Syndrome Scale (PANSS) scores and illness duration of SCH patients. The study showed the abnormal functional integration in primary sensorimotor network and executive control network in SCH patients.
ObjectiveTo reveal impairments in the perceptual networks in tuberous sclerosis complex (TSC) with epilepsy by functional connectivity MRI (fcMRI). MethodsThe fcMRI-based independent component analysis (ICA) was used to measure the resting state functional connectivity in nine TSC patients with epilepsy recruited from June 2010 to June 2012 and perceptual networks including the sensorimotor network (SMN), visual network (VN), and auditory network (AN) were investigated. The correlation between Z values in regions of interest (ROIs) and age of seizure onset or duration of epilepsy were analyzed. ResultsCompared with the controls, the TSC patients with epilepsy presented decreased functional connectivity in primary visual cortex within the VN networks and there were no increased connectivity. Increased connectivity in left middle temporal gyrus and inferior temporal gyrus was found and decreased connectivity was detected in right inferior frontal gyrus within AN networks. Decreased connectivity was detected at the right inferior frontal gyrus and the increase in connectivity was found in right thalamus within SMN netwoks. No significant correlations were found between Z values in ROIs including the primary visual cortex within the VN, right thalamus and inferior frontal gyrus within SMN, left temporal lobe and right inferior frontal gyrus within AN and the duration of the disease or the age of onset. ConclusionFhere is altered (both increased and decreased) functional connectivity in the perceptual networks of TSC patients with epilepsy. The decreased functional connectivity may reflect the dysfunction of correlative perceptual networks in TSC patients, and the increased functional connectivity may indicate the compensatory mechanism or reorganization of cortical networks. Our fcMRI study may contribute to the understanding of neuropathophysiological mechanisms underlying perceptual impairments in TSC patients with epilepsy.