目的 通过复制人肝癌细胞株HepG2裸鼠皮下移植瘤模型,观察绿茶提取物表没食子儿茶素没食子酸酯(EGCG)干预对HepG2移植瘤新生血管生成的影响。 方法 瘤体接种复制HepG2移植瘤模型,荷瘤裸鼠20只随机分组,实验组给予EGCG溶液每日20 mg/(kg·只),腹腔注射3周,对照组给予等量灭菌注射用水3周,末次用药24 h,后处死裸鼠,剥离移植瘤。常规病理切片观察移植瘤组织结构;逆转录-聚合酶链式反应和免疫组织化学法检测移植瘤缺氧诱导因子-1α(HIF-1α)、血管内皮生长因子(VEGF)mRNA及蛋白表达,并通过检测CD34表达计数瘤组织微血管密度(MVD)。 结果 组织病理学观察实验组移植瘤见大量坏死区,瘤体内血管数量明显少于对照组;实验组HIF-1α、VEGF mRNA及蛋白表达水平比对照组均明显下调(P<0.05),实验组MVD比对照组明显下降(P<0.05)。 结论 EGCG可抑制荷瘤裸鼠HepG2移植瘤新生血管生成。
Objective To investigate the effect of epigallocatechin gallate (EGCG) on chondrocyte senescence and its mechanism. Methods The chondrocytes were isolated from the articular cartilage of 4-week-old Sprague Dawley rats, and cultured with type Ⅱcollagenase and passaged. The cells were identified by toluidine blue staining, alcian blue staining, and immunocytochemical staining for type Ⅱ collagen. The second passage (P2) cells were divided into blank control group, 10 ng/mL IL-1β group, and 6.25, 12.5, 25.0, 50.0, 100.0, and 200.0 μmol/L EGCG+10 ng/mL IL-1β group. The chondrocyte activity was measured with cell counting kit 8 after 24 hours of corresponding culture, and the optimal drug concentration of EGCG was selected for the subsequent experiment. The P2 chondrocytes were further divided into blank control group (group A), 10 ng/mL IL-1β group (group B), EGCG+10 ng/mL IL-1β group (group C), and EGCG+10 ng/mL IL-1β+5 mmol/L 3-methyladenine (3-MA) group (group D). After cultured, the degree of cell senescence was detected by β-galactosidase staining, the autophagy by monodansylcadaverine method, and the expression levels of chondrocyte-related genes [type Ⅱ collagen, matrix metalloproteinase 3 (MMP-3), MMP-13] by real-time fluorescent quantitative PCR, the expression levels of chondrocyte-related proteins (Beclin-1, LC3, MMP-3, MMP-13, type Ⅱ collagen, P16, mTOR, AKT) by Western blot. Results The cultured cells were identified as chondrocytes. Compared with the blank control group, the cell activity of 10 ng/mL IL-1β group significantly decreased (P<0.05). Compared with the 10 ng/mL IL-1β group, the cell activity of EGCG+10 ng/mL IL-1β groups increased, and the 50.0, 100.0, and 200.0 μmol/L EGCG significantly promoted the activity of chondrocytes (P<0.05). The 100.0 μmol/L EGCG was selected for subsequent experiments. Compared with group A, the cells in group B showed senescence changes. Compared with group B, the senescence rate of chondrocytes in group C decreased, autophagy increased, the relative expression of type Ⅱ collagen mRNA increased, and relative expressions of MMP-3 and MMP-13 mRNAs decreased; the relative expressions of Beclin-1, LC3, and type Ⅱ collagen proteins increased, but the relative expressions of P16, MMP-3, MMP-13, mTOR, and AKT proteins decreased; the above differences were significant (P<0.05). Compared with group C, when 3-MA was added in group D, the senescence rate of chondrocytes increased, autophagy decreased, and the relative expressions of the target proteins and mRNAs showed an opposite trend (P<0.05). ConclusionEGCG regulates the autophagy of chondrocytes through the PI3K/AKT/mTOR signaling pathway and exerts anti-senescence effects.