Objective To investigate the feasibility of temporary ectopic implantation of amputated fingers and dorsalis pedis flaps for thumb reconstruction and skin defect repair of the hand. Methods Between February 2006 and February 2012, 9 patients with thumb amputation having no replanted condition were treated. There were 7 males and 2 females with an average age of 35 years (range, 20-45 years). The injury causes included explosive injury in 1 case, puncher injury in 1 case, stiring machine injury in 1 case, gear injury in 3 cases, and heavy pound injury in 3 cases. At 2-5 hours after injury, one-stage temporary ectopic implantation of amputated finger to foot was performed. After debridement, thumb defect was rated as degree III in 1 case, as degree IV in 3 cases, and as degree V in 5 cases. When amputated fingers survived completely after 1-4 months, the amputated finger was replanted to its anatomic position, skin defect was repaired with dorsalis pedis flap. The area of skin defect ranged from 5 cm × 4 cm to 7 cm × 6 cm. The area of flaps ranged from 6 cm × 5 cm to 8 cm × 7 cm. The donor site was repaired by the skin grafting. Results Arterial crisis occurred in 1 case after 1 day of one-stage operation, and was cured after vascular exploration, and the amputated fingers survived in the others. The reconstructed thumbs and flaps survived after two-stage operation, and the skin graft at donor site survived. The patients were followed up 1-4 years (mean, 2.8 years). The reconstructed thumbs had good appearance and satisfactory opposition and finger-to-finger functions. According to the standard functional evaluation issued by Hand Surgery Association of Chinese Medical Association, the scores of survival fingers were 73-91 (mean, 84); the results were excellent in 7 cases and good in 2 cases with an excellent and good rate of 100%. Conclusion Temporary ectopic implantation of amputated finger to foot combined with dorsalis pedis flap can be used to reconstruct thumb and repair skin defect of the hand.
Objective To summarize the cl inical experience of repairing soft tissue defect in dorsal pedis with reversed fascia pedicled peroneal perforating branch sural neurofasciocutaneous flap, and to explore surgery matters needingattention and measures to prevent flap necrosis. Methods Between August 2000 and April 2009, 31 patients with soft tissue defects in dorsal pedis were treated with reversed fascia pedicled peroneal perforating branch sural neurofasciocutaneous flaps. There were 23 males and 8 females with a median age of 34 years (range, 3-65 years). Defects were caused by traffic accident in 20 cases, by machine in 2 cases, and by crush in 2 cases. The time from injury to admission was 1-32 days (mean, 15 days). And 6 cases had chronic ulcer or unstable scar excision with disease duration of 6 months to 10 years, and 1 case had squamous carcinoma with disease duration of 5 months. The wounds were located in medial dorsal pedis in 12 cases and lateral dorsal pedis in 19 cases; including 14 wounds near the middle metatarsal and 17 wounds beyond the middle metatarsal (up to the metatarsophalangeal joint in 10 cases). All cases accompanied with bone or tendon exposure. Five cases accompanied with long extensor muscle digits tendon rupture and defect, 1 case accompanied with talus fracture, 1 case accompanied with talus fracture and third metatarsal fracture. The size of the wounds ranged from 6.0 cm × 4.5 cm to 17.0 cm × 10.0 cm. The size of the flaps ranged from 8.0 cm × 5.5 cm to 20.0 cm × 12.0 cm. The donor sites were resurfaced by skin graft. Results Seventeen flaps survived uneventfully, wounds healed by first intention. Distal epidermal or superficial necrosis occurred in 6 flaps at 5-12 daysafter operation, wounds healed by dressing change or skin graft. Distal partial necrosis occurred in 8 flaps (7 in medial dorsal pedis and 1 in lateral dorsal pedis) at 7-14 days after operation, wounds healed by skin graft in 3 cases, by secondary suture in 3 cases, by local flap rotation in 1 case, and by cross leg flap in 1 case. All skin grafts at donor sites survived uneventfully, wounds healed by first intention. Twenty-nine patients were followed up 6-29 months (mean, 19 months). The appearance was sl ightly overstaffed, but wearing shoe function and gait were normal. The texture and color of the flaps in all cases were good. There was no pigmentation and suppuration relapse. There was neither ankle plantar flexion deformity nor hammer toe deformity in 5 cases accompanied with long extensor muscle digits tendon rupture and defect. All fractures healed at 3 months after operation in 2 cases. Conclusion The reversed fascia pedicled peroneal perforating branch sural neurofasciocutaneous flaps are suitable to repair most soft tissue defects in lateral dorsal pedis. When the flaps are used to repair soft tissue defects in medial dorsal pedis, avoiding tension in flaps and fascia pedicles should be noted so as to improve flap survival.
Objective To summarize the method and the cl inical outcome of repairing both toe extensor tendon and dorsal foot wounds with anterolateral thigh flap. Methods Between February 2007 and May 2009, 11 patients with toe extensor tendon and dorsal foot defect were treated with anterolateral thigh flap. There were 8 males and 3 females with a medianage of 45 years (range, 10-60 years). The causes of injury were sharp injury in 3 cases, machine crush injury in 3 cases, and traffic accident injury in 5 cases, including 7 cases of fresh wounds with a disease duration of 2-8 hours and 4 cases of old wounds with a disease duration of 3-15 days. The size of wound ranged from 6 cm × 5 cm to 25 cm × 15 cm. All cases compl icated by toe extensor tendon defect, which were located at the 2nd-5th toes in 1 case, 3rd-5th toes in 1 case, 2nd-4th toes in 2 cases, 2nd and 3rd toes in 3 cases, 1st and 2nd toes in 1 case, and 1st toe in 3 cases. In the first stage, the anterolateral thigh flap ranged from 8 cm × 7 cm to 27 cm × 15 cm was used to repair defect and fascia lata was used to bridge two ends of digitorum longus tendon; the donor site was sutured or repaired with the skin graft. The second stage was performed after 2-3 months, tenolysis for tendon was performed, and fascia lata was spl it into tendon-l ike shape; and the toe functional exercises were done. Results All flaps survived completely after the first stage, wounds healed by first intention; the donor skin graft survived and incisions healed by first intention. At 7 days after the second stage, marginal necrosis occurred in 3 flaps (0.5-2.0 cm in width), and healed after 15-20 days of dressing change; the other flaps survived, and incisions healed by first intention. Eight patients were followed up 12-18 months (mean, 15 months). Excepts 4 sl ight bulky flaps, the other flaps had satisfactory appearance and soft texture with two points discrimination of 1-3 cm. During the follow-up, part of the dorsiflexion function recovered in 5 patients (5-40°), andflexion function was normal; 3 dorsiflexion function disappeared without effect on the function of toe flexion, and the patients could walk normally. No toe ptosis occurred. Conclusion Appl ication of the anterolateral thigh flap can repair toe extensor tendon and dorsal foot wounds with short treatment time and less damage at the donor site, so it can avoid toe ptosis after surgery and achieve excellent cl inical results.
Objective To investigate the surgical methods and cl inical results of reconstructing soft tissue defects in distal dorsal is pedis with distally based medial dorsal neurocutaneous flap on foot. Methods From January 2004 to July 2007, 11 cases of soft tissue defects in distal dorsal is pedis were treated with the distally based medial dorsal neurocutaneousflap on foot, including 8 males and 3 females aged 18-55 years. Nine cases were caused by crash and 2 cases were caused by traffic accident. There were 4 cases of tendon exposure and skin defects in the distal dorsal is pedis, 6 cases of bone exposure and skin defects in and adjacent to the first metatarsal head and 1 case of bone exposure and skin defects in the distal dorsal is pedis due to the third and fourth toe damage. The area of defects ranged from 3 cm × 3 cm to 7 cm × 5 cm. Distally based medial dorsal neurocutaneous flaps on foot were incised to repair the soft tissue defects and the size of the flaps ranged from 4 cm × 4 cm to 8 cm × 6 cm. Thickness skin graft was appl ied to repair donor site. Results All the flaps survived and all wounds healed by first intention. Skin graft in donor site survived completely in 10 cases and survived partly in 1 cases (heal ing was achieved after the flap above lateral malleolus was used to repair). All cases were followed up for 6 months-1 year. The color, texture and thickness of the flaps were similar to those of recipient site. All patients returned to their normal weight-bearing walking. No skin ulceration in flaps and donor site was observed. Conclusion The operative technique of the distally based medial dorsal neurocutaneous flap on foot is simple, convenient and safe. The distally based flap is effective in repairing soft tissue defects of middle and small sized skin and soft tissue defects in distal dorsal is pedis.
Objective To provide the anatomic basis for thedesign of the intermediate dorsal neurocutaneous flap on the foot and to reportthe clinical results. Methods On 32 adult cadaver lower limb specimens perfused with red latex, the origins, diameters, courses, branches, and distributions of the intermediate dorsal cutaneous nerve of the foot and its nutrient vessels were observed. On this anatomic basis, from June 2004 to October2005, 5 flaps were developed and applied to the repair of the soft tissue defect in the feet of 4 patients. Results The intermediate dorsal cutaneous nerve of the foot was found to arise from the superficial peroneal nerve. Crossing the intermalleolar line, it was located 1.3±0.6 cm lateral to the midpoint of the line with a diameter of 2.05±0.56 mm. The nerve stem divided into branches 2.8±1.3 cm distal to the line. They distributed the dorsal skin of the second, third and fourth metatarsal and toe. On average, 5.1 perforators per specimen were identified. At least 3 nutrient vessels were always found in each. They originated from the cutaneous branches of the anterior tibial artery and the dorsalis pedis artery in the proximal end and the dorsalis metatarsal artery in the distal end. They perforated the deep fascia 4.3±0.4 cm proximal to the intermalleolar, 1.6±0.3 cm proximal to the tip of the third toe webspace and 1.5±0.3 cm proximal to the tip of the forth toe webspace, respectively. The external diameters of them were 0.82±0.13, 0.42±0.07 and 0.49±0.09 mm, respectively. The patients were followed up for 4-10 months. All theflaps survived completely. Their appearance and function were satisfactory. Conclusion The distallybased intermediate dorsal neurocutaneousflap on the foot has an abundant blood supply. This kind of flap is especially useful in repair of the soft tissue defect in the foot.