ObjectiveTo investigate the effect of power-assisted intravascular shunt in replantation of amputated limbs of rabbits. MethodsEighty rabbits weighing 1.8-2.5 kg (male or female) were selected to establ ish the model of circular amputation at the hind groin, only femoral arteries and veins were completely preserved. After the femoral artery was clamped in 60 rabbits, the rabbits underwent power-assisted intravascular shunt with high-flow rate (group A, n=20), powerassisted intravascular shunt with low-flow rate (group B, n=20), and no power-assisted intravascular shunt (group C, n=20) to reconstruct blood supply; the femoral artery was not clamped in another 20 rabbits of sham group (group D). Before and after intravascular shunt (1, 3, 6, and 12 hours), the malondialdehyde (MDA), lactate dehydrogenase (LDH), and creatine kinase (CK) of the serum were determined. The myeloperoxidase (MPO), MDA, and wet to dry weight ratio (W/D ratio) of the gastrocnemius muscle were measured, and the thrombogenesis and survival rate of limb were observed. ResultsBefore intravascular shunt, MDA, LDH, and CK of the serum and MPO, MDA, and W/D ratio of the muscle showed no significant difference among 4 groups (P>0.05). At each time point after intravascular shunt, no significant difference was found in all indexes between groups A and D (P>0.05); the indexes of groups B and C were significantly higher than those of groups A and D (P<0.05); the values were the highest in group C (P<0.05), and reached the peak at 12 hours. All limbs of group A survived with low thrombosis rate, and less limbs could survive with high thrombosis rate in group C. ConclusionThe power-assisted intravascular shunt with high-flow rate can effective ensure the blood supply of the amputated limbs of rabbits with lower limb injury and higher survival rate of amputated limbs after replantation.
ObjectiveTo investigate the application of the double skin paddle arterialized venous flaps for reconstruction of soft tissue defects in the middle and proximal parts of double fingers. MethodBetween September 2011 and December 2014, 6 cases (12 fingers) of soft tissue defects in the middle and proximal parts of double fingers underwent reconstructive surgery with the double skin paddle arterialized venous flaps. There were 5 males and 1 female with an average age of 33.8 years (range, 19-52 years). The causes included cut injury in 4 cases and crush injury in 2 cases. Five index fingers, 3 middle fingers, 2 ring fingers, and 2 little fingers were involved. All defects located at proximal and middle fingers and defect did not exceed the distal interphalangeal joint. The defect area ranged from 2.5 cm×2.5 cm to 5.5 cm×4.0 cm. All cases had bone or tendon exposure, and 2 cases had phalangeal fracture. The disease duration was 1.5-7 hours (mean, 3.5 hours). The flap size was 8 cm×3 cm-14 cm×5 cm. The donor site was directly sutured (≤ 3.0 cm in width) or was repaired with skin graft (>3.0 cm in width). ResultsThe operation time was 2.5-5.0 hours (mean, 4.0 hours). All flaps survived completely. Tensive blisters occurred in 4 cases and were improved at 1 week after removal of suture around pedicle. Partial distal flap necrosis was noted in 1 case, healing was obtained after secondary debridement; other wounds healed in one stage. The patients were followed up 6-18 months (mean, 13 months). The flap had good texture, elasticity, and appearance. According to the hand function evaluation criteria issued by the Chinese Hand Society, the results were excellent in 3 cases, good in 2 cases, and fair in 1 case at last follow-up. The two-point discrimination of the flap was 8-10 mm (mean, 9 mm). ConclusionsThe double skin paddle arterialized venous flaps have the advantages of simple technique and definite effectiveness for reconstruction of soft tissue defects in the middle and proximal part of double fingers.
Objective To observe the systemic and local immune response after repair of nerve defect with acellular nerve xenograft laden with allogenic adipose-derived stem cells (ADSCs) in rhesus monkey so as to evaluate the safety of the proposed material for nerve reconstruction. Methods Bilateral tibial nerves were taken from a healthy adult male landrace (weighing 48 kg) to prepare acellular nerve xenograft by chemical extraction. ADSCs were isolated from a healthy adult male rhesus monkey (weighing 4.5 kg), and were seeded into the acellular nerve grafts. The radial nerve defect models with 25 mm in length were established in 10 healthy adult female rhesus monkeys (weighing 3-5 kg), and they were divided into cell-laden group (n=5) and non-cell-laden group (n=5) randomly. Defect was repaired with acellular nerve xenograft laden with allogenic ADSCs in cell-laden group, with acellular nerve xenograft only in non-cell-laden group. The blood samples were taken from peripheral vein preoperatively and at 14, 60, and 90 days after operation for lymphocyte analysis; at 5 months after operation, the grafts were harvested to perform histological examination for local immune response and nerve regeneration. The nerve autograft in rhesus monkey was used as control. Results In cell-laden group and non-cell-laden group, no significant difference was found in the count of lymphocytes and T lymphocytes, the percentage of T lymphocytes, CD8+ T lymphocytes, as well as the ratio of CD4+ T lymphocytes to CD8+ T lymphocytes between pre- and post-operation (P gt; 0.05); in cell-laden group, the percentage of CD4+ T lymphocytes at 14 days was significantly lower than that at 60 and 90 days postoperatively (P lt; 0.05). The percentage of CD4+ T lymphocytes in cell-laden group was significantly lower than that in non-cell-laden group at 14 days (P lt; 0.05), but no significant difference was found in the other indexes at the other time between 2 groups (P gt; 0.05). At 5 months after operation, mild adhesion was found on the surface of nerve xenografts; the epineurium of nerve xenografts was thicker than that of nerve autografts; and neither necrosis nor fibrosis was found. CD3+, CD4+, CD8+, CD68+, and CD163+ T lymphocytes were scattered within the grafts, in which regenerative axons were revealed. CD3+, CD4+, CD8+, CD68+, and CD163+ T lymphocytes were comparable in cell-laden group, non-cell-laden group, and autograft group. Conclusion Repair of nerve defect with acellular nerve xenograft elicits neither systemic nor local immune response in rhesus monkeys. Implantation of allogenic ADSCs might result in transient depression of CD4+ T lymphocytes proliferation early after surgery, no immune response can be found.
【Abstract】 Objective To report cl inical experience in the use of temporary intravascular shunts (TIVS) for quickrestoration of perfusion to the extremity with major vascular injury. Methods Between August 2009 and March 2011, TIVSwas applied temporarily to restore blood perfusion to the extremity in 6 patients with major extremity vascular structure injury secondary to trauma (4 patients) or tumor resection (2 patients), who would received vascular transplantation and underwent long ischemia. The patterns of vascular shunts included external carotid artery-subclavian artery, axillary artery-axillary artery, axillary vein-subclavian vein, brachial artery-brachial artery, brachial vein-brachial vein, brachial artery-radial artery, femoral artery-popliteal artery, and popliteal artery-posterior tibial artery. After TIVS, extensive debridement, fracture fixation, or tumor excision was performed. Then the shunted tubes were removed, and the vessels were repaired definitly. Six vessels were repaired by transplanting the great saphenous veins; one vessel was anastomosed directly without tension; and one vessel was repaired by artificial vascular graft. Results All shunted tubes were successfully established within 5 to 10 minutes (mean, 8.2 minutes). The duration of bypass ranged from 67 to 210 minutes. After establishment of TIVS, blood perfusion to the affected limb was improved. When shunted tubes were removed, thrombosis and partial obstruction occurred in one who accepted amputation, and the others kept patency. No loosening of tubes and haemorrhage occurred. At 2-15 months of follow-up, affected limbs had good blood supply. Conclusion TIVS is rapid and simple, which can quickly restore blood perfusion to the extremity with major vascular injury and shorten the ischemic time of the affected extremity.