west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "间充质干细胞" 165 results
  • AN EXPERIMENTAL STUDY ON REPAIR OF SCIATIC NERVE INJURY BY Schwann-LIKE CELLS DERIVED FROM UMBILICAL CORD BLOOD MESENCHYMAL STEM CELLS

    ObjectiveTo evaluate the effect of using Schwann-like cells derived from human umbilical cord blood mesenchymal stem cells (hUCBMSCs) as the seed cells to repair large sciatic nerve defect in rats so as to provide the experimental evidence for clinical application of hUCBMSCs. MethodsFourty-five male Sprague Dawley (SD) rats in SPF grade, weighing 200-250 g, were selected. The hUCBMSCs were harvested and cultured from umbilical cord blood using lymphocyte separating and high molecular weight hydroxyethyl starch, and then was identified. The hUCBMSCs of 3rd generation were induced to Schwann-like cells, and then was identified by chemical derivatization combined with cytokine. The acellular nerve basal membrane conduit was prepared as scaffold material by the sciatic nerve of SD rats through repeated freezing, thawing, and washing. The tissue engineered nerve was prepared after 7 days of culturing Schwann-like cells (1×107 cells/mL) on the acellular nerve basal membrane conduit using the multi-point injection. The 15 mm sciatic nerve defect model was established in 30 male SD rats, which were randomly divided into 3 groups (10 rats each group). Defect was repaired with tissue engineered nerve in group A, with acellular nerve basal membrane conduit in group B, and with autologous sciatic nerve in group C. The nerve repair was evaluated through general observation, sciatic function index (SFI), nerve electrophysiology, weight of gastrocnemius muscle, and Masson staining after operation. ResultsThe hUCBMSCs showed higher expression of surface markers of mesenchymal stem cells, and Schwann-like cells showed positive expression of glia cell specific markers such as S100b, glial fibrillary acidic protein, and P75. At 8 weeks after operation, the acellular nerve basal membrane conduit had no necrosis and liquefaction, with mild adhesion, soft texture, and good continuity at nerve anastomosis site in group A; group B had similar appearance to group A; adhesion of group C was milder than that of groups A and B, with smooth anastomotic stoma and no enlargement, and the color was similar to that of normal nerve. SFI were gradually decreased, group C was significantly greater than groups A and B, group A was significantly greater than group B (P<0.05). The compound action potential could be detected in anastomotic site of 3 groups, group C was significantly greater than groups A and B, and group A was significantly greater than group B in amplitude and conduction velocity (P<0.05). Atrophy was observed in the gastrocnemius of 3 groups; wet weight's recovery rate of the gastrocnemius of group C was significantly greater than that of groups A and B, and group A was significantly greater than group B (P<0.05). Masson staining showed that large nerve fibers regeneration was found in group A, which had dense and neat arrangement with similar fiber diameter. The density and diameter of medullated fibers, thickness of myelinated axon, and axon diameter of group C were significantly greater than those of groups A and B, and group A was significantly greater than group B (P<0.05). ConclusionTissue engineered nerves from hUCBMSCs-derived Schwann-like cells can effectively repair large defects of the sciatic nerve. hUCBMSCs-derived Schwann-like cells can be used as a source of seed cells in nerve tissue engineering.

    Release date:2016-08-25 10:18 Export PDF Favorites Scan
  • Protective Effect of Allogeneic Bone Marrow Derived Mesenchymal Stem Cells Transplantation on Hepatic Warm Ischemia Reperfusion Injury in Rats

    Objective To explore repair role of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) transplantation on treating hepatic ischemia reperfusion injury (HIRI) in rats. Methods Ten rats were executed to get BM-MSCs, then BM-MSCs were cultured in vitro and dyed by 4,6-diamidino-2-phenylindole (DAPI). Models of 70% hepatic ischemia reperfusion injury were eatablished. Thirty two rats were randomly divided into sham operation group (Sham group), ischemia reperfusion group (I/R group), Vitamin C group (VC group), and BM-MSCs group. Serum samples were analyzed for ALT and AST, and hepatic tissue were for superoxide dismutase (SOD) and malondialdehyde (MDA). Liver sections were stain with hematoxylin and eosin (HE) for histological analysis, TUNEL staining was applied to detect hepatic apoptosis. Serum and tissues were both collected at 24 h after reperfusion. Results The isolated BM-MSCs maintained vigorous growth in vitro. Specific markers for MSCs antigens CD29 and CD44 were detected by flow cytometry, but antigens CD34 and CD45 were not be detected. Models of HIRI were stable, and BM-MSCs were detected around the periportal area by DAPI staining. Compared with I/R group, levels of ALT, AST, MDA, and AI in the VC group and BM-MSCs group decreased at 24 h after reperfusion (P<0.05), meanwhile SOD level increased (P<0.05). Compared with VC group, levels of ALT, AST, MDA, and AI in the BM-MSC group decreased at 24 h after reperfusion (P<0.05), meanwhile SOD level increased (P<0.05). Conclusion BM-MSCs could protect HIRI by alleviating oxidative stress and inhibiting cellular apoptosis.

    Release date: Export PDF Favorites Scan
  • Translocation and Expression of GLUT-4 in Bone Marrow Mesenchymal Stem Cells Transfected with Akt Gene of Rat Ex Vivo

    Objective To elucidate whether glucose transporters-4 (GLUT-4) takes part in glucose uptake of mesenchymal stem cells (MSCs) and whether Akt gene improves translocation and expression of GLUT-4 in MSCs under hypoxic environment ex vivo. Methods MSCs, transfected by Akt gene and no, were cultured with normoxia (5% CO2) or hypoxia (94%N2, 1%O2 and 5% CO2) at 37 ℃ for 8 h. Glucose uptake was assayed by using radiation isotope 2-[3H]-deoxy-Dglucose (3H-G) and the expression of GLUT-4 protein and mRNA was assayed by immunocytochemistry, Western blot and RT-PCR, respectively. Results ①3 H-G intake of MSCs was significantly increased in hypoxiatransfection group than that in hypoxia-non-transfection 〔(1.39±0.13) fold, P<0.05〕, but which was lower than that in normoxia-non-transfection group, P<0.05. ②GLUT-4 was expressed by MSCs under any conditions. Compared with normoxia-non-transfection group, hypoxia decreased the expressions of GLUT-4 mRNA and protein significantly (P<0.05). ③Compared with hypoxianontransfection group, the expression of GLUT-4 〔mRNA(1.756±0.152) fold, total protein in cell (1.653±0.312) fold, protein in plasma membrane (2.041±0.258) fold〕 was increased in hypoxia-transfection group significantly (P<0.05), but which was lower than that in normoxianontransfection group (P<0.05). ④There was significantly positive relation between 3H-G intake and GLUT-4 protein expression in plasma membrane (r=0.415, P=0.001).Conclusion GLUT-4 may take part in glucose uptake of MSCs, and the capability of Akt gene to improve MSCs anti-hypoxia may be finished by its role in increasing the expression and translocation of GLUT-4.

    Release date:2016-09-08 10:50 Export PDF Favorites Scan
  • Effect of Cryopreservation and Resuscitation on Biological Characteristics of Mesenchymal Stem Cells Derived from Human Umbilical Cord Blood

    Objective  To observe the effects of cryopreservation and resuscitation on the biological characteristics of mesenchymal stem cells (MSCs) derived f rom human umbilical cord blood. Methods  MSCs were isolated and cultured f rom human umbilical cord blood in vitro. The cells were passaged , and the third generation of MSCs were cryopreserved in-196 ℃ liquid nitrogen for 4 weeks with cryopreservation medium , which contained 10 % dimethyl sulfoxide (DMSO) and 90 % fetal calf serum ( FCS) . The morphology , proliferation and differentiation of MSCs were investigated and compared with those of MSCs before cryopreservation. Results  There was no significant difference of morphology between pre-cryopreserved MSCs and the ones af ter resuscitation. It was observed that all MSCs were spindle-shaped and showed adherence growth characteristic before and af ter cryopreservation. The cell growth curves of MSCs were also similar before and af ter cryopreservation. Even though the curve of resuscitated MSCs descended a little as compared with that of pre-cryopreserved MSCs , there was no significant difference ( Pgt; 0. 05) . After 2-week adipocytic differentiation induction , fat drops could be found in the kytoplasm of MSCs and they were red when stained with oil-red O staining , which suggested that MSCs could be induced and differentiated into adipocytes. Af ter 4-week osteoblastic differentiation induction , MSCs could be induced and differentiated into osteoblasts , and calcium node showed black when stained with Von Kossa staining. There were no significant changes of the differentiating ability of MSCs into adipocyte and osteoblast before and after cryopreservation. Conclusion  MSCs derived from human umbilical cord blood maintains their biological characteristics af ter cryopreservation and resuscitation.

    Release date: Export PDF Favorites Scan
  • The Treatment of Experimental Pulmonary Fibrosis with Bone Marrow Mesenchymal Stem Cells Transplantation

    Objective To explore the treatment effect of bone marrow mesenchymal stem cells( BMSCs)transplantation in ratmodel of bleomycin-induced pulmonary fibrosis. Methods BMSCs fromten-day-old SDmale rat were cultured and marked with 4, 6-diamidino-2-phenylindole( DAPI) . Seventy female SD rats were randomly divided into four groups. Group A( n = 21) was intratracheally injected with saline as control. Group B( n = 21)were intratracheally injected with BLMA5 to establish pulmonary fibrosis. Group C( n = 21) was injected with BLMA5 intratracheally and BMSCs intravenously via tail vein simultaneously. Group D( n = 7) was injected with BMSCs 14 days after BLMA5 injection. The rats were sacrificed on 7th, 14th and 28th day respectively( rats of group D were on28th) . HE and Masson stainings were performed to observe lung pathological changes. Fluorocyte marked with DAPI was analyzed by fluorescent microscope. Sex determining region Y( SRY) gene were detected by PCR. The lung levels of HYP, tumor necrosis factor-α( TNF-α) and transforming growth factor-β1 ( TGF-β1 ) were measured by ELISA. Results ( 1) In group C and D, BMSCs marked with DAPI were detected in lung frozen section on 7th, 14th and 28th day, and SRY gene of male rats were detected by PCR. ( 2) Alveolitis was most obvious on 7th day and pulmonary fibrosis was most severe on 28th day in group B compared to other three groups( P lt;0. 05 or 0. 01) . Alveolitis and pulmonary fibrosis in group C and D were significantly alleviated compared to group B( P lt; 0. 05) , but still more severe than group A( P lt; 0. 05 or 0. 01) , which in group D was more severe compared to group C( P lt;0. 05) . ( 3) HYP level in group B, coincided with fibrosis, began to increase on7th day and reached the peak on 28th day, significantly higher than other three groups( P lt;0.05 or 0. 01) . TNF-αlevel in group B was highest on 7th day, then descended, which was significantly higher than group A and C on 14th day and not obviously different from other three groups on 28th day. TGF-β1 level in group B was highest on 28th day which was different significantly fromother three groups. Conclusion BMSCs can colonize in the recipient lung tissue and effectively prevent the development of pulmonary fibrosis of rats induced by BLMA5, especially in the early stage.

    Release date:2016-09-14 11:22 Export PDF Favorites Scan
  • The Construction of Mesenchymal Stem Cells Carrying Angiopoietin 1 and Its Application in Lung Injury

    Objective To determine if mesenchymal stem cells ( MSCs) could be reconstructed as a vehicle for angiopoietin-1 ( Ang1) gene therapy in lung injury. Methods MSCs were obtained from adult male inbred mice and cultured to passage four. The cells were identified by fluorescence-activated cell sorting ( FACS) analysis and cell differentiation detection. Lentiviral vectors contained GFP and Ang1 gene were conducted in 293T cells through three plasmids co-transfection method. Then MSCs were transduced with Ang1 gene efficiently through lentiviral vectors. The mRNA expression of Ang1 in MSCs was detected by RT-PCR before and after transfection. Also fluorescence from MSCs was detected by fluorescence microscope every day after transfection. Two hours after LPS inhalation, mice were infused via jugular veinwith normal saline ( NS group) , lentiviral vector carrying Ang1 ( Ang1 group) , lentiviral vector carrying GFP ( MSCs group) , and lentiviral vector carrying Ang1 /GFP ( MSCs-Ang1 group) , respectively. Kaplan-Meier survival analysis was performed to compare the effects of MSCs-Ang1 on survival. And ectogenic MSCs origined lung cells were investigated in receipt mice. Results After passaged and purification,MSCs were confirmed to have the potential of differentiation. The lentiviral vectors carrying Ang1 and GFP were also identified. After transfection, the mRNA expression of Ang1 in MSCs was enhanced. Through the fluorescence microscope,MSCs get the most green fluorescence expression five days after the transfection when MOI was 20. Kaplan-Meier survival analysis showed that MSCs-Ang1 infusion had improved survival rates of lung injury rats compared with the control, but it did not reach statistical significance ( P = 0. 066) . Cells expressing GFP in lung tissues can be observed after MSCs were transplanted in vivo. Conclusions MSCs expressing Ang1 high can be constructed through lentiviral vector transfer, and MSCs-origined cells can be detected in receipt lungs after transplantation. So MSCs may serve as a vehicle for gene therapy in lung injury.

    Release date:2016-09-14 11:25 Export PDF Favorites Scan
  • The Research Progress of Mesenchymal Stem Cells in Acute Lung Injury/Acute Respiratory Stress Syndrome

    ARDS 是引起重症患者呼吸衰竭的主要原因, 尽管医疗技术有了很大的进步, 但对ARDS 的治疗只局限在器官支持层面, 其病死率仍高达40% [ 1] 。ARDS的主要病理改变为肺泡上皮细胞和毛细血管内皮细胞受损, 通透性增加, 富含蛋白质的液体渗出积聚于肺间质和肺泡。因此促进损伤肺毛细血管内皮细胞和肺泡上皮细胞的有效修复可能是ARDS治疗的关键所在。随着干细胞工程学的发展, 间充质干细胞( MSC) 作为一种理想的组织修复来源, 在ARDS 治疗中的应用受到越来越多的关注, 这可能为ARDS 的治疗开辟一条新的途径。

    Release date:2016-08-30 11:53 Export PDF Favorites Scan
  • Effects of Bone Marrow-Derived Mesenchymal Stem Cells on Airway Inflammation and Airway Remodeling in Chronic Asthmatic Mice

    【Abstract】 Objective To investigate the effect of allogeneic bone marrow-derived mesenchymal stem cells ( BMSCs) transplantation on the airway inflammation and airway remodeling in chronic asthmatic mice. Methods Forty female BALB/c mice were equally randomized into four groups, ie. a normal control group, a BMSCs control group, an asthma model group, and a BMSCs transplantation group. BMSCs were generated from male donor mice, then the mice in the asthma model group and the BMSCs transplantation group were sensitized and challenged with OVA to establish chronic asthmatic mice model. Hematoxylin and eosin staining and Alcian blue-periodic acid-Schiff staining were used to analyze the effects on airway inflammation and airway remodeling after BMSC engraftment. The number of CD4 + CD25 + regulatory T cells in spleen was detected by flow cytometry. Results In lungs of the asthmamodel group, there were intensive inflammatory cells infiltration around airway and blood vessels, goblet cell proliferation, epithelial desquamation, patchy airway occlusion by hyperviscous mucus, and hypertrophy of airway smooth muscle.Airway inflammation and airway remodeling were significantly relieved in the BMSCs transplantation group.There was no obvious inflammatory cells infiltration in the airway and airway remodeling both in the normal control group and the BMSCs control group. The number of CD4 + CD25 + regulatory T cells in spleensignificantly decreased in the asthma model group compared with the two control groups ( P lt; 0. 05) , and significantly increased in the BMSCs transplantation group compared with the asthma model group ( P lt;0. 05) . There was no significant difference in the number of CD4 + CD25 + regulatory T cells in spleen betweenthe control groups and the BMSCs transplantation group. Conclusion BMSCs engraftment can up-regulate CD4 + CD25 + regulatory T cells and relieve airway inflammation and airway remodeling in asthmatic mice.

    Release date:2016-08-30 11:55 Export PDF Favorites Scan
  • The Effects and Related Mechanism of IGF-1-Treated Mesenchymal Stem Cells in Pulmonary Fibrosis in Rats

    【Abstract】 Objective To explore the new therapy for pulmonary fibrosis by observing the effects of insulin-like growth factor 1 ( IGF-1) treated mesenchymal stemcells ( MSCs) in rats with bleomycin-induced pulmonary fibrosis. Methods Bone marrowmesenchymal stemcells ( BMSCs) were harvested from6-week old male SD rats and cultured in vitro for the experiment. 48 SD rats were randomly divided into 4 groups, ie.a negative control group ( N) , a positive control group/bleomycin group ( B) , a MSCs grafting group ( M) ,and an IGF-1 treated MSCs grafting group ( I) . The rats in group B, M and I were intratracheally injected with bleomycin ( 1 mL,5 mg/kg) to induce pulmonary fibrosis. Group N were given saline as control. Group M/ I were injected the suspension of the CM-Dil labled-MSCs ( with no treatment/pre-incubated with IGF-1 for 48 hours) ( 0. 5mL,2 ×106 ) via the tail vein 2 days after injected bleomycin, and group B were injected with saline ( 0. 5 mL) simultaneously. The rats were sacrificed at 7,14,28 days after modeling. The histological changes of lung tissue were studied by HE and Masson’s trichrome staining. Hydroxyproline level in lung tissue was measured by digestion method. Frozen sections were made to observe the distribution of BMSCs in lung tissue, and the mRNA expression of hepatocyte growth factor ( HGF) was assayed by RTPCR.Results It was found that the red fluorescence of BMSCs existed in group M and I under the microscope and the integrated of optical density ( IOD) of group I was higher than that of group M at any time point. But the fluorescence was attenuated both in group M and group I until day 28. In the earlier period, the alveolitis in group B was more severe than that in the two cells-grafting groups in which group I was obviously milder. But there was no significant difference among group I, M and group N on day 28.Pulmonary fibrosis in group B, Mand I was significantly more severe than that in group N on day 14, but itwas milder in group M and I than that in group B on day 28. Otherwise, no difference existed between the two cells-grafting groups all the time. The content of hydroxyproline in group B was significantly higher than that in the other three groups all through the experiment, while there was on significant difference betweengroup I and group N fromthe beginning to the end. The value of group M was higher than those of group I and group N in the earlier period but decreased to the level of negative control group on day 28. Content of HGF mRNA in group Nand group I was maintained at a low level during the whole experiment process. The expression of HGF mRNA in group I was comparable to group M on day 7 and exceeded on day 14, the difference of which was more remarkable on day 28. Conclusions IGF-1 can enhance the migratory capacity of MSCs which may be a more effective treatment of lung disease. The mechanismmight be relatedto the increasing expression of HGF in MSCs.

    Release date:2016-08-30 11:55 Export PDF Favorites Scan
  • Effects of Bone Marrow Mesenchymal Stem Cells on Pulmonary Fibroblasts of Patients with Nonspecific Interstitial Pneumonitis

    Objective To explore the effects of bone marrow mesenchymal stem cells ( BMMSCs) on pulmonary fibroblasts of patients with nonspecific interstitial pneumonitis ( NSIP) , and investigate the therapeutic mechanism of BMMSCs for interstitial pulmonary fibrosis. Methods Human BMMSCs, human pulmonry fibroblasts ( HPFs) from NSIP patients, and normal HPFs were primary cultured in vitro. Then HPFs fromNSIP patients were co-cultured with BMMSCs or normal HPFs using Transwell co-culture system. After 24 hours, levels of transforming growth factor β1 (TGF-β1) and interferon inducible protein 10 ( IP-10) in culture supernatants were detected by ELISA method. Meanwhile, interleukin-6 ( IL-6) , IL-8, and monocyte chemotactic protein-1 ( MCP-1) in co-culture supernatants were detected by liquid chip. After co-cultured for 48 hours, total protein of HPFs was extracted and the expression level of alpha smooth muscle actin ( α-SMA) secreted by HPFs were detected by Western blot.Results HPFs from NSIP patients secreted higher level of IL-6, IL-8, and MCP-1 than normal HPFs, and secreted high level of α-SMA. In the Transwell co-culture system, human BMMSCs significantly reduced the levels of IL-6, IL-8, and MCP-1 secreted from HPFs of NSIP patients, and reduced the high expression of α-SMA in HPFs of NSIP patients. Conclusion Human BMMSCs can significantly reduce the secretion of IL-6, IL-8, MCP-1, and the expression of α-SMA in HPFs from NSIP patients.

    Release date:2016-08-30 11:56 Export PDF Favorites Scan
17 pages Previous 1 2 3 ... 17 Next

Format

Content