As the most popular simplified model of the optical imaging system, the acquisition of the Gaussian point spread function (PSF) parameter is one of the hotspots and key points on which people do research in the field of image restoration. Based on the idea by which there exists deterministic mathematical relationship between Gaussian OTF feature points as well as its parameter and the frequency representation of the image in an existed literature, we proposed an automatic, accurate, stable, and improved approach. This method is able to give prominence to the related calculation feature by a Gaussian convolution and degeneration operation and finally realize the automatic estimation of PSF parameter of a microscopic image. Experiments have proved that a good restoration result can be achieved utilizing the estimated PSF by the present method, which is of considerable application and reference value in restoration of other sorts with Gaussian approximate PSF model or 3D microscopic image restoration .
ObjectiveTo explore the effect of occupational therapy by stages on the activities of daily living (ADL) in spinal cord injury (SCI) patients during Wenchuan earthquake. MethodsTwenty-six SCI patients during Wenchuan earthquake admitted into the People's Hospital of Mianzhu City from July 2008 to June 2011 underwent two-stage occupational therapy. The first stage therapy continued for three months and the second continued for three weeks. ADL was measured using the modified barthel index (MBI). ResultsThe MBI in SCI patients after first-stage therapy was 65.71±19.30, and the MBI in SCI patients after the second-stage therapy was 76.93±16.82. All MBI item scores during the second-stage therapy were higher than in the first stage therapy, and the ability of stool and urine control, and walking increased significantly (P<0.05). ConclusionEarly and continuous occupational therapy by stages can increase the activities of daily living in spinal cord injury patients during Wenchuan earthquake.
Image interpolation is often required during medical image processing and analysis. Although interpolation method based on Gaussian radial basis function (GRBF) has high precision, the long calculation time still limits its application in field of image interpolation. To overcome this problem, a method of two-dimensional and three-dimensional medical image GRBF interpolation based on computing unified device architecture (CUDA) is proposed in this paper. According to single instruction multiple threads (SIMT) executive model of CUDA, various optimizing measures such as coalesced access and shared memory are adopted in this study. To eliminate the edge distortion of image interpolation, natural suture algorithm is utilized in overlapping regions while adopting data space strategy of separating 2D images into blocks or dividing 3D images into sub-volumes. Keeping a high interpolation precision, the 2D and 3D medical image GRBF interpolation achieved great acceleration in each basic computing step. The experiments showed that the operative efficiency of image GRBF interpolation based on CUDA platform was obviously improved compared with CPU calculation. The present method is of a considerable reference value in the application field of image interpolation.
Objective To investigate the effectiveness of posterior short-segmental fixation with bone cement augmentation in treatment of stage Ⅲ Kümmell’s disease with spinal canal stenosis. Methods Between June 2012 and January 2017, 36 patients with stage Ⅲ Kümmell’s disease and spinal canal stenosis were treated by posterior short-segmental fixation and bone cement augmentation. There were 12 males and 24 females, aged 55-83 years (mean, 73.5 years). The disease duration ranged from 2 to 8 months, with an average of 4.6 months. Preoperative bone mineral density examination showed that all patients had different degrees of osteoporosis in the spines. The lesion segments included T10 in 4 cases, T11 in 7 cases, T12 in 8 cases, L1 in 9 cases, and L2 in 8 cases. The preoperative neural function was classified as grade B in 4 cases, grade C in 12 cases, grade D in 13 cases, and grade E in 7 cases according to Frankle classification. The operation time, intraoperative blood loss, and the volume of injected bone cement, and hospital stay were recorded. The visual analogue scale (VAS) score, Oswestry Disability Index (ODI), kyphotic Cobb angle, and the height of anterior edge of injured vertebra were recorded before operation, at 1 week after operation, and at last follow-up; and the leakage of bone cement was observed. Results All operations were completed successfully. The operation time was 90-145 minutes (mean, 110.6 minutes); the intraoperative blood loss was 198-302 mL (mean, 242.5 mL); the volume of injected bone cement was 8.3-10.5 mL (mean, 9.2 mL); the hospital stays were 7-12 days (mean, 8.3 days). All patients were followed up 12-26 months (mean, 24.5 months). At 1 week after operation, the neural function was classified as grade B in 2 cases, grade C in 8 cases, grade D in 12 cases, and grade E in 14 cases, which was significantly improved when compared with that before operation (Z=2.000, P=0.047). The VAS score, ODI, the height of anterior edge of injured vertebra, and Cobb angle were significantly improved at 1 week and last follow-up when compared with preoperative values (P<0.05); but there was no significant difference between 1 week and last follow-up (P>0.05). Two cases had asymptomatic cement leakage to the intervertebral disc at 1 week after operation; and 1 case had adjacent vertebral fracture at 8 months after operation. No complication such as loosening or breaking of internal fixator occurred during the follow-up. Conclusion Posterior short-segmental fixation with bone cement augmentation is a safe and effective surgical scheme for stage Ⅲ Kümmell’s disease combined with spinal canal stenosis, which can avoid the aggravation of nerve injury and complications related to staying in bed.