west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "骨缺损" 277 results
  • REPAIR OF LARGE TIBIAL BONE AND SOFT TISSUE DEFECTS BY SHORTENING-LENGTHENING METHOD

    Objective To investigate the effectiveness of shortening-lengthening method using Ilizarov technique for repairing large tibial bone and soft tissue defects. Methods Between January 2006 and December 2011, 12 patients with large tibial bone and soft tissue defects were treated by shortening-lengthening method using Ilizarov technique. There were 8 males and 4 females with an average age of 39.3 years (range, 18-65 years). The causes were injury in 8 cases and chronic infection in 4 cases. The area of soft tissue defect was 5 cm × 4 cm to 20 cm × 16 cm, and the length of tibial bone defect was 4.5-8.0 cm with an average of 6.2 cm. Results Incision in the lengthening area healed by first intention; healing of wounds by first intention was achieved in 6 cases, delayed healing in 2 cases, and secondary healing in 4 cases, with no common peroneal nerve injury. All patients were followed up 18-54 months with an average of 29 months. In the lengthening area, the bone healing time was 180-365 days (mean, 267 days), and the healing index was 3.8-4.3 days/mm (mean, 4.1 days/mm). In the shortening area, the bone healing time was 195-380 days (mean, 297 days) in the others except 1 case who was repaired with bone grafting. Mild pin-related infection and loosening were observed in all cases, but no infection occurred in the lengthening or shortening area. At last follow-up, weight bearing of the leg was fully recovered in 12 cases. According to Mazur’s criteria, the function of ankle was excellent in 2 cases, good in 6 cases, and fair in 4 cases. Nine patients had equal limb length, and 3 patients had shortened length less than 2 cm. Conclusion Shortening-lengthening method using Ilizarov technique has the advantages of simple surgery, less complications, easy to close the wound, and good effectiveness in repairing of large tibial bone and soft tissue defects.

    Release date:2016-08-31 10:53 Export PDF Favorites Scan
  • EXTRA-LARGE UNCEMENTED ACETABULAR COMPONENTS FOR HIP REVISION

    Objective To investigate the early-term effectiveness of extra-large uncemented acetabular components for hip revision in the treatment of extensive acetabular bone defect. Methods Between September 2008 and May 2012, 13 patients (13 hips) with extensive acetabular bone defect underwent first hip revision using extra-large uncemented acetabular components (Jumbo cup). The diameter of Jumbo cup was larger than or equal to 64 mm for male and 60 mm for female. There were 4 males and 9 females with an average age of 64.7 years (range, 58-84 years). The period from primary arthroplasty to revision was 3-16 years (mean, 9.6 years). According to Paprosky classification, acetabular bone defect was rated as stage IIA in 2 cases, as stage IIB in 5 cases, as stage IIC in 4 cases, and as stage IIIA in 2 cases. The preoperative vertical distance from the center of involved femoral head to interteardrop line was (21.2 ± 6.1) mm longer than that of normal side. The Harris score and the rotation center of hip were evaluated preoperatively and postoperatively. Results Healing of incision by first intention was obtained in all patients, and no complication of dislocation, infection, and injury of sciatic nerve or femoral nerve occurred. The duration of follow-up ranged from 13 to 40 months (mean, 23.5 months). Partial or complete pain relief was achieved in all patients. The other patients could walk independently and restored to their routine jobs except for 1 case of hemiplegia caused by acute cerebral infarction at 3 months after surgery. In 5 patients with bone implantation, with the prolonging follow-up, the allograft could integrate with the host bone without absorption, and the bone fusion time was 9-35 months (mean, 14.5 months). At last follow-up, the X-ray films revealed that the vertical distance from the center of involved femoral head to interteardrop line was (6.0 ± 3.1) mm longer than that of normal side, which was significantly reduced when compared with preoperative value (t=11.13, P=0.00). No periprosthetic transparent region, prosthesis displacement, or screw breakage occurred. The Harris score was significantly increased from 30.4 ± 8.8 preoperatively to 85.1 ± 3.2 at last follow-up (t=22.11, P=0.00). Conclusion The application of extra-large uncemented acetabular components could be an effective technique for the reconstruction of extensive acetabular bone defect, and gain a good early-term effectiveness. The long-term survival rate of prostheses needs to be followed up.

    Release date:2016-08-31 04:05 Export PDF Favorites Scan
  • PROGRESS OF Masquelet TECHNIQUE TO REPAIR BONE DEFECT

    Objective To summarize the progress of Masquelet technique to repair bone defect. Methods The recent literature concerning the application of Masquelet technique to repair bone defect was extensively reviewed and summarized. Results Masquelet technique involves a two-step procedure. First, bone cement is used to fill the bone defect after a thorough debridement, and an induced membrane structure surrounding the spacer formed; then the bone cement is removed after 6-8 weeks, and rich cancellous bone is implanted into the induced membrane. Massive cortical bone defect is repaired by new bone forming and consolidation. Experiments show that the induced membrane has vascular system and is also rich in vascular endothelial growth factor, transforming growth factor β1, bone morphogenetic protein 2, and bone progenitor cells, so it has osteoinductive property; satisfactory results have been achieved in clinical application of almost all parts of defects, various types of bone defect and massive defect up to 25 cm long. Compared with other repair methods, Masquelet technique has the advantages of reliable effect, easy to operate, few complications, low requirements for recipient site, and wide application. Conclusion Masquelet technique is an effective method to repair bone defect and is suitable for various types of bone defect, especially for bone defects caused by infection and tumor resection.

    Release date:2016-08-31 04:05 Export PDF Favorites Scan
  • OSTEOGENIC EFFECT OF PEPTIDES ANCHORED AMINATED TISSUE ENGINEERED BONE FOR REPAIRING FEMORAL DEFECT IN RATS

    Objective To study the osteogenic effects of a new type of peptides anchored aminated-poly-D, L-lactide acid (PA/PDLLA) scaffold in repairing femoral defect in rats. Methods The PDLLA scaffolds were treated by ammonia plasma and subsequent anchor of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides via amide linkage formation. Thus PA/PDLLA scaffolds were prepared. The bone marrow was harvested from the femur and tibia of 4 4-week-old Sprague Dawley (SD) rats, and bone marrow mesenchymal stem cells (BMSCs) were isolated and cultured by whole bone marrow adherence method. BMSCs-scaffold composites were prepared by seeding osteogenic-induced BMSCs at passages 3-6 on the PA/PDLLA and PDLLA scaffolds. The right femoral defects of 8 mm in length were prepared in 45 adult male SD rats (weighing, 350-500 g) and the rats were divided into 3 groups (n=15) randomly. BMSCs-PA/PDLLA (PA/PDLLA group) or BMSCs-PDLLA (PDLLA group) composites were used to repair defects respectively, while defects were not treated as blank control (blank control group). General state of the rats after operation was observed. At 4, 8, and 12 weeks after operation, general, radiological, histological, micro-CT observations and real-time fluorescent quantitative PCR were performed. Results Two rats died after operation, which was added; the other rats survived to the end of the experiment. At each time point after operation, general and radiological observations showed more quick and obvious restoration in PA/PDLLA group than in PDLLA group; no bone repair was observed in blank control group. The X-ray scores were the highest in PA/PDLLA group, higher in PDLLA group, and the lowest in blank control group; showing significant difference in multiple comparison at the other time (P lt; 0.05) except between blank control group and PDLLA group at 4 weeks (P gt; 0.05). The X-ray scores showed an increasing trend in PDLLA group and PA/PDLLA group with time (P lt; 0.05). Histological and micro-CT observations showed the best osteogenesis in PA/PDLLA group, better in PDLLA group, and worst in blank control group. Comparison between groups had significant differences (P lt; 0.05) in bone mineral density, bone volume/total volume of range of interest, trabecular number, and structure model index. Significant differences (P lt; 0.05) were found in the expression levels of osteogenesis-related genes, such as osteocalcin, alkaline phosphatase, collagen type I, bone morphogenetic protein 2, and osteopontin when compared PA/PDLLA group with the other groups by real-time fluorescent quantitative PCR analysis. Conclusion The PA/PDLLA scaffolds can accelerate the repair of femoral defects in rats.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • EFFECT OF INTERNAL FIXATION ON STABILITY OF PEDICLED FASCIAL FLAP AND OSTEOGENESIS OF EXCEED CRITICAL SIZE DEFECT OF BONE

    Objective To evaluate the effect of internal fixation on the stability of pedicled fascial flap and the osteogenesis of exceed critical size defect (ECSD) of bone so as to provide theory for the clinical application by the radiography and histology observation. Methods The ECSD model of the right ulnar midshaft bone and periosteum defect of 1 cm in length was established in 32 New Zealand white rabbits (aged 4-5 months), which were divided into group A and group B randomly (16 rabbits in each group). The composite tissue engineered bone was prepared by seeding autologous red bone marrow (ARBM) on osteoinductive absorbing material (OAM) containing bone morphogenetic protein and was used repair bone defect. A pedicled fascial flap being close to the bone defect area was prepared to wrap the bone defect in group A (control group). Titanium miniplate internal fixation was used after defect was repair with composite tissue engineered bone and pedicled fascial flap in group B (experimental group). At 2, 4, 6, and 8 weeks, the X-ray films examination, morphology observation, and histology examination were performed; and the imaging 4-score scoring method and the bone morphometry analysis was carried out. Results All rabbits survived at the end of experiment. By X-ray film observation, group B was superior to group A in the bone texture, the space between the bone ends, the radiographic changes of material absorption and degradation, osteogenesis, diaphysis structure formation, medullary cavity recanalization. The radiographic scores of group B were significantly higher than those of group A at different time points after operation (P lt; 0.05). By morphology and histology observation, group B was superior to group A in fascial flap stability, tissue engineered bone absorption and substitution rate, external callus formation, the quantity and distribution area of new cartilage cells and mature bone cells, and bone formation such as bone trabecula construction, mature lamellar bone formation, and marrow cavity recanalization. The quantitative ratio of bone morphometry analysis in the repair area of group B were significantly larger than those of group A at different time points after operation (P lt; 0.05). Conclusion The stability of the membrane structure and the bone defect area can be improved after the internal fixation, which can accelerate bone regeneration rate of the tissue engineered bone, shorten period of bone defect repair, and improve the bone quality.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • TISSUE TRANSPLANTATION WITH BONE TRANSMISSION FOR TREATING LARGE DEFECTS OF TIBIAL BONE AND SOFT TISSUE

    Objective To investigate the effectiveness of tissue transplantation combined with bone transmission in treatment of large defects of tibial bone and soft tissue. Methods Between February 2006 and February 2011, 15 cases of traumatic tibia bone and soft tissue defects were treated. There were 12 males and 3 females, aged from 16 to 54 years (mean, 32 years). After internal and external fixations of fracture, 11 patients with open fracture (Gustilo type III) had skin necrosis, bone exposure, and infection; after open reduction and internal fixation, 2 patients with closed fracture had skin necrosis and infection; and after limb replantation, 2 patients had skin necrosis and bone exposure. The area of soft tissue defect ranged from 5 cm × 5 cm to 22 cm × 17 cm. Eight cases had limb shortening with an average of 3.5 cm (range, 2-5 cm) and angular deformity. The lenghth of bone defect ranged from 4 to 18 cm (mean, 8 cm). The flap transplantation and skin graft were used in 9 and 6 cases, respectively; bone transmission and limb lengthening orthomorphia were performed in all cases at 3 months after wound healing; of them, 2 cases received double osteotomy bone transmission, and 14 cases received autologous bone graft and reset after apposition of fracture ends. Results All flaps and skin grafts survived; the wound healed at 3.5 months on average (range, 3 weeks-18 months). The length of bone lengthening was 6-22 cm (mean, 8 cm). The time of bone healing and removal of external fixation was 9.5-39.0 months (mean, 15 months). The healing index was 40-65 days/cm (mean, 55 days/cm). All patients were followed up 1-5 years (mean, 4 years). The wounds of all the cases healed well without infection or ulceration. The functions of weight-bearing and walking were recovered; 6 cases had normal gait and 9 cases had claudication. The knee range of motion was 0° in extention, 120-160° in flexion (mean, 150°). According to the American Orthopaedic Foot and Ankle Society (AOFAS) scoring system for ankle function, the results were excellent in 7 cases, good in 4 cases, and fair in 4 cases, with an excellent and good rate of 73.3%. Conclusion Tissue transplantation combined with bone transmission is an effective method to treat large defects of soft tissue and tibial bone, which can increase strength of bone connection and reduce damage to the donor site.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • APPLICATION OF OCCLUSAL GUIDE PLATE COMBINED WITH INTERMAXILLARY FIXATION SCREW IN MANDIBULAR DEFECT REPAIR WITH FREE FIBULAR FLAP

    Objective To investigate the clinical value of occlusal guide plate combined with intermaxillary fixation screw in mandibular defect repair with free fibular flap. Methods Between August and December 2011, 7 patients with mandibular tumor were treated, including 5 cases of ameloblastoma and 2 cases of gingival cancer. Of 7 patients, 4 were males and 3 were females, aged 32-65 years (median, 50 years). Occlusal guide plate was prepared and the implanted position of intermaxillary fixation screws was determined preoperatively. Hemimandibulectomy was performed in 5 cases, half mandibular segmental resection with condyle reservation in the other 2 cases. The free fibular flaps of 11-13 cm in length were harvested for repairing mandibular defects. When the free fibular flaps were fixed, the occlusal guide plate and intermaxillary fixation screws were utilized to restorate the occlusal relation. The donor site was sutured directly. Results The average operation time was 9.5 hours (range, 7-12 hours). All free fibular flaps survived completely. All incisions at the donor site and recipient site healed by first intention. All patients were followed up 10-14 months with an average of 12.3 months. All patients had symmetrical face, good occlusal relation, normal mouth opening, and normal mandibular lateral movement, and no pain of bilateral temporomandibular joints occurred. Panoramic tomography showed good mandibular contour and the suitable emplacement of fibular flaps postoperatively. No tumor recurrence occurred during follow-up period. Conclusion When repairing the mandibular defect with free fibular flap, occlusal guide plate with intermaxillary fixation screw contributes to simplifying operation, accurate recovery of the appearance and occlusal relation, and improving the oral comfort level postoperatively.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • 钛网包裹自体松质骨打压植骨修复桡骨节段缺损一例

    目的介绍一种新的利用钛网包裹自体松质骨打压植骨修复桡骨节段缺损方法。 方法2011年10月,收治1例53岁机器击伤致左桡骨中下段开放粉碎性骨折合并5.4 cm桡骨缺损患者,待伤口愈合和局部皮肤条件改善后,二期采用切开复位钢板内固定和钛网包裹自体髂骨松质骨打压植骨修复桡骨节段骨缺损。 结果术后4个月见断端连续性骨痂连接、初步植骨融合表现,局部无压、叩痛,腕关节功能轻度受限,达临床愈合标准;术后6个月断端植骨融合更清晰,腕关节活动度接近正常,Green-O’Brien腕关节功能临床评分90分,为良;术后12个月末次随访,骨折愈合及腕关节功能临床评分无变化。 结论采用钛网包裹自体松质骨打压植骨修复桡骨节段缺损,不仅成骨快、愈合良好,且简便、安全。

    Release date:2016-08-31 04:06 Export PDF Favorites Scan
  • STUDY ON ACCURACY OF VIRTUAL SURGICAL PLANNING IN FREE FIBULA MANDIBULAR RECONSTRUCTION BY USING SurgiCase SOFTWARE

    Objective To evaluate the directional significance of SurgiCase software in free fibula mandibular reconstruction. Methods Between September 2010 and March 2012, 10 patients with mandibular defect underwent free fibula mandibular reconstruction. There were 7 males and 3 females, with an age range of 19-43 years (mean, 27 years). The extent of lesions was 7 cm × 5 cm to 16 cm × 8 cm. In each case, three-dimensional spiral CT scan of the maxilla, mandible, and fibula was obtained before surgery. The CT data were imported into the SurgiCase software and the virtual surgery planning was performed. After that, the mandibular rapid prototyping was made according to customized design. The reconstruction surgery was then carried out using these preoperative data. During actual surgery, the extent of mandibular defect was from 6 cm × 3 cm to 16 cm × 5 cm; the length of fibula which was used to reconstruct mandible was 6-17 cm; and the area of flap was from 6 cm × 5 cm to 16 cm × 6 cm. Results Preoperative data could not be applied because the intraoperative size of tumor was larger than preoperative design in 1 case of mandibular ameloblastoma, and the fibula was shaped according to the actual osteotomy location; operations were performed successfully according to preoperative design in the other 9 patients. The operation time was 5-7 hours (mean, 6 hours). Primary healing of incision was obtained, without early complications. Ten patients were followed up 1 year. At last follow-up, 8 patients were satisfactory with the appearance and 2 patients complained with unsatisfied wide facial pattern. The panoramic radiograghs showed good bone healing. The range of mouth opening was 2.5-3.5 cm. Conclusion SurgiCase software can provide precise data for free fibula mandibular reconstruction during surgery. It can be applied widely in clinic.

    Release date:2016-08-31 04:08 Export PDF Favorites Scan
  • EFFECT OF ALLOGENEIC CHONDROCYTES-CALCIUM ALGINATE GEL COMPOSITE UNDER INTERVENTION OF LOW INTENSIVE PULSED ULTRASOUND FOR REPAIRING RABBIT KNEE ARTICULAR CARTILAGE DEFECT

    Objective To investigate the effect of allogeneic chondrocytes-calcium alginate gel composite under the intervention of low intensive pulsed ultrasound (LIPUS) for repairing rabbit articular cartilage defects. Methods Bilateral knee articular cartilage were harvested from 8 2-week-old New Zealand white rabbits to separate the chondrocytes by mechanical-collagen type II enzyme digestion. The 3rd passage chondrocytes were diluted by 1.2% sodium alginate to 5 × 106 cells/mL, then mixed with CaCl2 solution to prepare chondrocytes-calcium alginate gel composite, which was treated with LIPUS for 3 days (F0: 1 MHz; PRF: 1 kHz; Amp: 60 mW/cm2; Cycle: 50; Time: 20 minutes). An articular cartilage defect of 3 mm in diameter and 3 mm in thickness was established in both knees of 18 New Zealand white rabbits (aged 28-35 weeks; weighing, 2.1-2.8 kg), and divided into 3 groups randomly, 6 rabbits in each group: LIPUS group, common group, and model group. Defect was repaired with LIPUS-intervention gel composite, non LIPUS-intervention gel composite in LIPUS group and common group, respectively; defect was not treated in the model group. The general condition of rabbits was observed after operation. The repair effect was evaluated by gross and histological observations, immunohistochemical staining, and Wakitani score at 8 and 12 weeks after operation. Results Defect was filled with hyaline chondroid tissue and white chondroid tissue in LIPUS and common groups, respectively. LIPUS group was better than common group in the surface smooth degree and the degree of integration with surrounding tissue. Defect was repaired slowly, and the new tissue had poor elasticity in model group. Histological observation and Wakitani score showed that LIPUS group had better repair than common group at 8 and 12 weeks after operation; the repair effect of the 2 groups was significantly better than that of model group (P lt; 0.05); and significant differences in repair effect were found between at 8 and 12 weeks in LIPUS and common groups (P lt; 0.05). The collagen type II positive expression area and absorbance (A) value of LIPUS and common groups were significantly higher than those of model group (P lt; 0.05) at 8 and 12 weeks after operation, and the expression of LIPUS group was superior to that of common group at 12 weeks (P lt; 0.05); and significant differences were found between at 8 and 12 weeks in LIPUS group (P lt; 0.05), but no significant difference between 2 time points in common and model groups (P gt; 0.05). Conclusion Allogeneic chondrocytes-calcium alginate gel composite can effectively repair articular cartilage defect. The effect of LIPUS optimized allogeneic chondrocytes-calcium alginate gel composite is better.

    Release date:2016-08-31 04:08 Export PDF Favorites Scan
28 pages Previous 1 2 3 ... 28 Next

Format

Content