Objective To review the research progress of the risk factors for slip progression and the pathogenesis of lumbosacral spondylolisthesis, and to discuss the value of Spinal Deformity Study Group (SDSG) classification system for lumbosacral spondylolisthesis. Methods Recent articles about the risk factors for slip progression and the pathogenesis of lumbosacral spondylolisthesis were reviewed and comprehensively analyzed with SDSG classification system of lumbosacral spondylolisthesis. Results Pelvic incidence (PI) is the key pathogenic factor of lumbosacral spondylolisthesis. The Meyerding grade of slip, PI, sacro-pelvic balance, and spino-pelvic balance not only are the fundamental risk factors of slip progression, but also are the key factors to determine how to treat and influence the prognosis. Therefore, compared with Wiltse, Marchetti-Bartolozzi, and Mac-Thiong-Labelle classification systems of lumbosacral spondylolisthesis, SDSG classification based on these factors mentioned above, has better homogeneity between the subjects of subgroup, and better reliability, moreover, could better guide operative plan and judge the prognosis. Conclusion It is suggested that the SDSG classification system should be the standard classification for lumbosacral spondylolisthesis for the clinical and research work.
Objective To explore an improved surgical approach to the superior posterior partial resection of the fractured vertebral body followed by the single segmental fusion to treat lumbar burst fracture and to evaluate its preliminary clinical application. Methods From June to October 2006, 4 patients (2 males, 2 females; age, 17-39 years) with Denis B type lumbar burst fracture underwent the superior posterior partial resection of the fractured vertebral body followed by the single segmental fusion. The fracture occurred in 2 patients at L1 and 2 at L2. According to the Frankel scales assessment, before operation, 2patients were at Grade B and the other 2 at Grade C, and the visual analogue scale (VAS) was 7.00±0.82. Radiological evaluation was performed, which revealed the kyphosis Cobb angel of 22.94±11.21°, the adjacent superior and the inferiorintervertebal disc heights of 12.78±1.52 mm and 11.68±1.04 mm, espectively, and the vertebral canal sagittal diameter of 9.56±2.27 mm on the computer tomography (CT) scan. The neurological and the radiological evaluations were also made immediately and 3 months after operation. Results The anterior single segmental decompression and fusion operations were performed successfully in all the patients. The average operating time was 166±29 min and the average amount of blood loss was 395± 54 ml. The Frankel scales assessment showed that at the time immediately after operation, one of the 2 Grade B patients had an improvement to Grade C, but the other patient had no improvement. One of the 2 Grade C patientshad an improvement to Grade D, but the other patient had no improvement. Three months after operation, the 2 Grade B patients had an improvement to Grade C. The 2 grade C patients had an improvement to Grade D or E. The VAS score was significantly decreased to 3.50±1.29 after operation and to 1.25±0.50 3 months later (P<0.05). The vertebral canal sagittal diameter was significantly increased to 19.76±3.82 mm (Plt;0.01), but it was maintained to 19.27±3.41 mm3 months later, with no significant difference(Pgt;0.05). The patients’ kyphosis Cobb angle was significantly improved to 8.71±5.41° (P<0.05) , but it was maintained to 9.52±5.66° 3 months later, with no significant difference(Pgt;0.05). The heights of the adjacent discs remained unchanged. No complication was observedduring and after operation, and the radiological and the CT scanning evaluations 3 months later showed no failure of the internal fixation. Conclusion The superior and posterior partial resection of the fractured vertebral body followedby the single segmental fusion can effectively decompress the vertebral canal and maintain the spine stability in treatment of the Denis B type fracture thoughthe longterm effectiveness requires a further follow-up.
OBJECTIVE: To provide a better treatment method of lumbar stenosis and root pain resulting from simple hypertrophy of ligamentum flavum. METHODS: By studying the records of 143 lumbar pain cases, we found 5 cases caused by simple hypertrophy of ligamentum flavum. All the patients were old man with a long progressed history. There was little difference of clinical features between the disc herniation and hypertrophy of ligamentum flavum. All cases accepted resection of ligamentum flavum. RESULTS: All the symptoms were relieved postoperatively. The patients could walk. CONCLUSION: The degeneration of lumbar ligamentum flavum can cause lumbar stenosis and root pain. Resection of ligamentum flavum can relieve the symptom.
OBJECTIVE To investigate the effect of acid fibroblast growth factor (aFGF) on guided bone regeneration (GBR), to study whether aFGF can promote the repairing ability of GBR in bone defect. METHODS 10 mm long segmental defects were created in the diaphyses of both radii in 16 New Zealand rabbits. The defect was bridged with a silicon tube. Human recombinant aFGF was instilled into the tube on the experimental side, while the contralateral tube was instilled with saline as control group. The radiographic, gross and histologic examination of the samples were analyzed at 2, 4, 6 and 8 weeks after operation. RESULTS On the experimental side, there was new bone formation in the bone medullary cavity, the endosteum and the section surface of the cortex at 2 weeks. At 4 weeks, at the center of the blood clot in the tube there was new bone formation and bone defect was completely healed at 8 weeks. On the control side, new bone formation was less in every period compared with that of the experimental side. At 8 weeks, there was only partial healing of the bone defect. CONCLUSION It can be concluded that aFGF can promote new bone formation and facilitate GBR in bone defect.
ObjectiveTo explore the effectiveness and safety of treatment of thoracic tuberculosis with thoracoscope supported by digital technology. MethodsBetween June 2010 and February 2012, 11 patients with thoracic tuberculosis were treated and the clinical data were retrospectively analyzed. There were 7 males and 4 females with an average age of 23.6 years (range, 16-47 years) and an average disease duration of 16 months (range, 6-18 months). Two vertebral bodies and one intervertebral space were involved at T6-11. At preoperation, the neurologic function degree was classified as Frankel grade E. Three dimensional reconstruction of thorax and spine and surgical procedure design (including focal clearance, bone grafting, and screw fixation) were done at SUPERIMAGE workstation. Surgery procedures were conducted following the preoperative designs. ResultsThe operative procedures were consistent with preoperative designs. All of these operations were successfully performed. The mean time of operation was 146 minutes (range, 120-180 minutes); the mean blood loss was 120 mL (range, 100-150 mL); the mean indwelling time of closed thoracic drainage was 38 hours (range, 24-48 hours); and the mean hospitalization time was 4.6 days (range, 3-5 days). Eleven patients were followed up 12-25 months (mean, 16 months). No complication of nerve damage, incision pain and infection, or pulmonary infection was observed. Rigid fixation and born fusion were obtained at last follow-up; no obvious change of thoracic vertebral alignment was detected and no internal fixation failure occurred. ConclusionIt is a minimally invasive, effective, and safe method to treat thoracic tuberculosis with thoracoscope supported by digital technology.
Objective To investigate the influence of Nogo extracellular peptide residues 1-40 (NEP1-40) gene modification on the survival and differentiation of the neural stem cells (NSCs) after transplantation. Methods NSCs were isolated from the cortex tissue of rat embryo at the age of 18 days and identified by Nestin immunofluorescence. The lentiviruses were transduced to NSCs to construct NEP1-40 gene modified NSCs. The spinal cords of 30 Sprague Dawley rats were hemisected at T9 level. The rats were randomly assigned to 3 groups: group B (spinal cord injury, SCI), group C (NSCs), and group D (NEP1-40 gene modified NSCs). Cell culture medium, NSCs, and NEP1-40 gene modified NSCs were transplanted into the lesion site in groups B, C, and D, respectively at 7 days after injury. An additional 10 rats served as sham-operation group (group A), which only received laminectomy. At 8 weeks of transplantation, the survival and differentiation of transplanted cells were detected with counting neurofilament 200 (NF-200), glial fibrillary acidic portein (GFAP), and myelin basic protein (MBP) positive cells via immunohistochemical method; the quantity of horseradish peroxidase (HRP) positive nerve fiber was detected via HRP neural tracer technology. Results At 8 weeks after transplantation, HRP nerve trace showed the number of HRP-positive nerve fibers of group A (85.17 ± 6.97) was significantly more than that of group D (59.25 ± 7.75), group C (33.58 ± 5.47), and group B (12.17 ± 2.79) (P lt; 0.01); the number of groups C and D were significantly higher than that of group B, and the number of group D was significantly higher than that of group C (P lt; 0.01). Immunofluorescent staining for Nestin showed no obvious fluorescence signal in group A, a few scattered fluorescent signal in group B, and b fluorescence signal in groups C and D. The number of NF-200-positive cells and MBP integral absorbance value from high to low can be arranged as an order of group A, group D, group C, and group B (P lt; 0.05); the order of GFAP-positive cells from high to low was group B, group D, group C, and group A (P lt; 0.05); no significant difference was found in the percentage of NF-200, MBP, and GFAP-positive cells between group C and group D (P gt; 0.05). Conclusion NEP1-40 gene modification can significantly improve the survival and differentiation of NSCs after transplantation, but has no induction on cell differentiation. It can provide a new idea and reliable experimental base for the study of NSCs transplantation for SCI.
Objective To investigate short-term effectiveness of spinal navigation with the intra-operative three-dimensional (3D)-imaging modality in pedicle screw fixation for congenital scoliosis (CS). Methods Between July 2010 and December 2011, 26 patients with CS were treated. Of 26 patients, 13 patients underwent pedicle screw fixation using the spinal navigation with the intra-operative 3D-imaging modality (navigation group), while 13 patients underwent the conventional technique with C-arm X-ray machine (control group). There was no significant difference in gender, age, hemivertebra number and location, major curve Cobb angle, and Risser grade between 2 groups (P gt; 0.05). Operation time, operative blood loss, frequency of the screw re-insertion, and postoperative complication were observed. The pedicle screw position was assessed by CT postoperatively with the Richter’s standard and the correction of Cobb angle was assessed by X-ray films. Results All patients underwent the surgery successfully without major neurovascular complication. There was no significant difference in operation time, operative blood loss, and pedicle screw location between 2 groups (P gt; 0.05). A total of 58 screws were inserted in navigation group, and 3 screws (5.2%) were re-inserted. A total of 60 screws were inserted in control group, and 10 screws (16.7%) were re-inserted. There was significant difference in the rate of pedicle screw re-insertion between 2 groups (χ2=3.975, P=0.046). Patients of navigation group were followed up 6-24 months, and 6-23 months in control group. According to Richter’s standard, the results were excellent in 52 screws and good in 6 screws in navigation group; the results were excellent in 51 screws, good in 5 screws, and poor in 4 screws in control group. Significant difference was found in the pedicle screw position between 2 groups (Z= — 1.992, P=0.046). The major curve Cobb angle of 2 groups at 1 week and last follow-up were significantly improved when compared with preoperative value (P lt; 0.05), but there was no significant difference between 1 week and last follow-up (P gt; 0.05). No significant difference in correction rate of the major curve Cobb angle was found between 2 groups at last follow-up (t=0.055, P=0.957). Conclusion Spinal navigation with the intra-operative 3D-imaging modality can improve the accuracy of pedicle screw implantation in patients with CS, and effectually reduce the rate of screw re-insertion, and the short-term effectiveness is satisfactory.