west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "3D printing" 23 results
  • The Influence of 3D Printing Assisting Educational Intervention on the Anxiety and Sleep Outcomes in the Patients with Trauma

    ObjectiveTo explore the influence of 3D printing assisting educational intervention on the anxiety and sleep outcomes in the patients with trauma. MethodA total of 40 patients were selected between October 2014 and June 2015. The patients were randomly divided into the intervention group and control group with 20 patients in each. The outcomes from admitted to the 7th day after the surgery were evaluated, including visual analogue scale (VAS) scores, state-trait anxiety inventory (STAI) score, Likert score, and the condition of anxiety, pain, and sleep outcomes. ResultsThe differences in VAS scores, STAI scores, and Likert scores between the two groups were significant (P<0.05). Conclusions3D printing assisting educational intervention is a useful intervention that can improve post-operative outcomes for the patients with trauma.

    Release date: Export PDF Favorites Scan
  • Application of 3D Printing Technology in Hepatic Resection

    ObjectiveTo explore clinical value of 3D printing technology in hepatic resection. MethodsFrom March to May 2015, multidetector-row computed tomography images of 12 patients, including hepatic carcinoma in 6, hepatic hemangioma in 3, intra-and extra-hepatic bile duct stones in 3, were used for 3D hepatic reconstruction, the final segmentation data were converted to stereolithography files for 3D printing, 50%-70% scale of the full-sized liver model was fabricated by polylactic acid to be used to analyze its anatomical structure, design surgical planning, select the optimal operative route and simulate hepatic resection. Hepatic resection was performed by referring to the 3D printing model. ResultsThe hepatic resections were successful without complications by referring to the preoperative 3D printing models, the average blood loss was 340(100-1000) mL. ConclusionHepatic resection is more accurate and safe by 3D printing technology.

    Release date: Export PDF Favorites Scan
  • 3D Printing Technology in the Field of Thoracic and Cardiovascular Surgery

    3D printing technology has a promising prospect of medical use and clinical value, and may play an important role in the field of thoracic and cardiovascular surgery, such as preoperative diagnosis, surgical planning, surgical approach alternatives and organ replacement. This review focuses on the development of 3D printing technology in recent years and its use and prospect in the field of thoracic and cardiovascular surgery including surgical teaching and simulation, personalized prosthesis implantation, and artificial organ transplantation.

    Release date:2016-10-02 04:56 Export PDF Favorites Scan
  • Progress on Diagnosis and Treatment of Congenital Tracheal Stenosis

    Congenital tracheal stenosis (CTS) is a rare but potentially life-threatening disease which results in congnital airway lesion. CTS is often associated with cardiovascular anomalies and presented with a wide spectrum of symptoms. CTS has challenged pediatric surgeons for decades. Various classic approaches and new techniques, including computational fluid dynamics, tissue-engineering trachea, and 3D printing have been proposed for diagnosis and treatment of CTS. This review provides a snapshot of the main progress of diagnosis and treatment of CTS.

    Release date: Export PDF Favorites Scan
  • Application of 3D printing in the diagnosis and surgical treatment of congenital tracheal stenosis

    Objective To assess the application value of 3-dimensional(3D) printing technology in surgical treatment for congenital tracheal stenosis. Methods We retrospectively analyzed the clinical data of preoperative diagnosis, intra-operative decision-making and postoperative follow-up of four children with congenital tracheal stenosis under the guidance of 3D printing in our hospital between February 2013 and May 2014. There were 3 males and 1 female aged 23.0±7.1 months. Among them, two children were with pulmonary artery sling, one with ventricular septal defect, and the other one with tetralogy of Fallot. The airway stenosis was diagnosed preoperatively by chest CT scan and 3D printing tracheal models, and was confirmed by the help of bronchoscopy under anesthesia. During operation the associated cardiac malformation was corrected firstly under extracorporeal circulation followed by tracheal malformation remedy. The design and implementation of tracheal operation plans were guided by the shape and data from 3D printing trachea models. There were two patients with long segment of tracheal stenosis who received slide anastomosis. And the other two patients were characterized with tracheal bronchus, one of which combined ostial stenosis of right bronchial performed extensive slide anastomosis, and the other one performed end to end anastomosis. Results All the children’s preoperative 3D printing trachea models were in accord with bronchoscopy and intra-operative exploration results. Intra-operative bronchoscopy confirmed that all tracheal stenosis cured completely. All anastomotic stomas were of integrity, and all the luminals were fluent. There was no operative death or no serious complication. During 1-2 years follow-up, all patients breathed smoothly and their airways were of patency by postoperative 3D printing trachea model. Conclusion 3D printing can provide a good help to congenital tracheal stenosis in preoperative diagnosis, the design of operation plan, intra-operative decision-making and manipulation, which can improve the operation successful rate of tracheal stenosis.

    Release date:2017-03-24 03:45 Export PDF Favorites Scan
  • Advance in research of esophageal stent

    The esophageal disease is a major clinical disease. The esophageal stent has extensive clinical applications in the treatment of esophageal diseases. However, the clinical application of esophageal stent is limited, because there are lots of complications after implantation of esophageal stent. Biodegradable esophageal stent has two advantages: biodegradability and good histocompatibility. It is expected to solve a variety of complications of esophageal stent and provide a new choice for the treatment of esophageal diseases. Standardized esophageal stents are not fully applicable to all patients. The application of 3D printing technology in the manufacture of biodegradable esophageal stent can realize the individualized treatment of esophageal stent. And meanwhile, the 3D printing technology can reduce the manufacturing cost of the stent. This review aimed to summarize and discuss the application of esophageal stent, the current research status and prospect of biodegradable esophageal stent and the prospect of 3D printing technology in degradable esophageal stent, hoping to provide evidence and perspectives for the research of biodegradable esophageal stent.

    Release date:2018-01-31 02:46 Export PDF Favorites Scan
  • Application of three-dimensional printing technique in surgical treatment of congenital heart disease

    Objective To evaluate the application of three-dimensional printing technique in surgical treatments on complex congenital heart diseases. Methods Two patients were enrolled with complex congenital heart diseases. The computerized tomography data were used to build the 3D architecture of cardiac anomalies. The White-Jet-Process technique was used to print the models with 1∶1 ratio in size. The models were used to make the treatment strategy making, young surgeon training and operation simulation. Results The full color and hollowed-out cardiac models with 1∶1 ration in size were printed successfully. They were transected at the middle point of vertical axis, which was conveniently to explore the intracardiac anomalies. However, for patient 1, the model lost the atrial septal defect. Taking the two models as references, operation group held preoperative consultation, operation simulation, and finally, the operation plans were determined for the two patients. Both the two operation were carried out smoothly. Conclusion Although the limitations of 3D printing still exist in the application for congenital heart diseases, making the preoperative plan and operation simulation via 3D cardiac model could enhance the understanding of following operation and procedure details, which could improve the tacit cooperation among operation group members. Furthermore, operation results also could be improved potentially. Therefore, the cardiac 3D printing should be popularized in clinic in the future.

    Release date:2018-07-27 02:40 Export PDF Favorites Scan
  • Advances in the application of 3D printing technology in chest wall disease surgery

    Because of the characteristics such as accurate, efficient and individuation, 3D printing is being widely applied to manufacturing industry, and being gradually expanded into the medical field. Diseases of chest wall is a common type in thoracic surgery, and surgery is a proper treatment to this kind of disease. For the past few years, 3D printing is being gradually applied in surgery of chest wall diseases. The article mainly makes a statement of two parts that including the possibility to apply 3D printing including chest wall reconstruction and chest wall orthopedic, and to analyze the possibility and application prospect of applying 3D printing to the chest wall disease.

    Release date:2018-11-02 03:32 Export PDF Favorites Scan
  • Applications of 3D printing technology in the treatment of mitral valve disease

    Mitral valve disease is the most common cardiac valve disease. The main treatment of mitral valve disease is surgery or interventional therapy. However, as the anatomy of mitral valve is complicated, the operation is particularly difficult. As a result, it requires sophisticated experiences for surgeons. Three-dimensional (3D) printing technology can transform two-dimensional medical images into 3D solid models. So it can provide clear spatial anatomical information and offer safe and personalized treatment for the patients by simulating surgery process. This article reviews the applications of 3D printing technology in the treatment of mitral valve disease.

    Release date:2019-04-29 02:51 Export PDF Favorites Scan
  • Application of 3D printed lumbar puncture models in orthopedic clinical teaching

    ObjectiveTo explore the feasibility of lumbar puncture models based on 3D printing technology for training junior orthopaedic surgeons to find the optimal pedicle screw insertion points.MethodsMimics software was used to design 3D models of lumbar spine with the optimal channels and alternative channels. Then, the printed lumbar spine models, plasticine, and cloth were used to build lumbar puncture models. From January 2018 to June 2019, 43 orthopedic trainees performed simulated operations to search for the insertion points of pedicle screws base on the models. The operations were performed once a day for 10 consecutive days, and the differences in operation scores and operation durations of the trainees among the 10 days were compared.ResultsAll the trainees completed the surgical training operations successfully, and there were significant differences in the operation scores (13.05±2.45, 14.02±3.96, 17.58±3.46, 21.02±2.04, 23.40±4.08, 25.14±3.72, 27.26±6.09, 33.37±4.23, 35.00±4.15, 38.49±1.70; F=340.604, P<0.001) and operation durations [(22.51±4.28), (19.93±4.28), (18.05±2.89), (17.05±1.76), (16.98±1.97), (15.47±1.74), (13.51±1.42), (12.60±2.17), (12.44±1.71), (11.91±1.87) minutes; F=102.359, P<0.001] among the 10 days.ConclusionThe 3D models of lumbar puncture are feasible and repeatable, which can contribute to surgical training.

    Release date:2019-09-06 03:51 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content