west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Acellular" 54 results
  • AN EXPERIMENTAL STUDY ON REPAIR OF SCIATIC NERVE INJURY BY Schwann-LIKE CELLS DERIVED FROM UMBILICAL CORD BLOOD MESENCHYMAL STEM CELLS

    ObjectiveTo evaluate the effect of using Schwann-like cells derived from human umbilical cord blood mesenchymal stem cells (hUCBMSCs) as the seed cells to repair large sciatic nerve defect in rats so as to provide the experimental evidence for clinical application of hUCBMSCs. MethodsFourty-five male Sprague Dawley (SD) rats in SPF grade, weighing 200-250 g, were selected. The hUCBMSCs were harvested and cultured from umbilical cord blood using lymphocyte separating and high molecular weight hydroxyethyl starch, and then was identified. The hUCBMSCs of 3rd generation were induced to Schwann-like cells, and then was identified by chemical derivatization combined with cytokine. The acellular nerve basal membrane conduit was prepared as scaffold material by the sciatic nerve of SD rats through repeated freezing, thawing, and washing. The tissue engineered nerve was prepared after 7 days of culturing Schwann-like cells (1×107 cells/mL) on the acellular nerve basal membrane conduit using the multi-point injection. The 15 mm sciatic nerve defect model was established in 30 male SD rats, which were randomly divided into 3 groups (10 rats each group). Defect was repaired with tissue engineered nerve in group A, with acellular nerve basal membrane conduit in group B, and with autologous sciatic nerve in group C. The nerve repair was evaluated through general observation, sciatic function index (SFI), nerve electrophysiology, weight of gastrocnemius muscle, and Masson staining after operation. ResultsThe hUCBMSCs showed higher expression of surface markers of mesenchymal stem cells, and Schwann-like cells showed positive expression of glia cell specific markers such as S100b, glial fibrillary acidic protein, and P75. At 8 weeks after operation, the acellular nerve basal membrane conduit had no necrosis and liquefaction, with mild adhesion, soft texture, and good continuity at nerve anastomosis site in group A; group B had similar appearance to group A; adhesion of group C was milder than that of groups A and B, with smooth anastomotic stoma and no enlargement, and the color was similar to that of normal nerve. SFI were gradually decreased, group C was significantly greater than groups A and B, group A was significantly greater than group B (P<0.05). The compound action potential could be detected in anastomotic site of 3 groups, group C was significantly greater than groups A and B, and group A was significantly greater than group B in amplitude and conduction velocity (P<0.05). Atrophy was observed in the gastrocnemius of 3 groups; wet weight's recovery rate of the gastrocnemius of group C was significantly greater than that of groups A and B, and group A was significantly greater than group B (P<0.05). Masson staining showed that large nerve fibers regeneration was found in group A, which had dense and neat arrangement with similar fiber diameter. The density and diameter of medullated fibers, thickness of myelinated axon, and axon diameter of group C were significantly greater than those of groups A and B, and group A was significantly greater than group B (P<0.05). ConclusionTissue engineered nerves from hUCBMSCs-derived Schwann-like cells can effectively repair large defects of the sciatic nerve. hUCBMSCs-derived Schwann-like cells can be used as a source of seed cells in nerve tissue engineering.

    Release date:2016-08-25 10:18 Export PDF Favorites Scan
  • Efficacy and Safety of Acellular Dermal Matrix in Preventing Frey Syndrome: A Systematic Review

    Objective To evaluate the efficacy and safety of acellular dermal matrix (ADM) in preventing Frey syndrome.Methods Studies of acellular dermal matrix in preventing Frey syndrome were searched in The Cochrane Library (Issue 1, 2010), MEDLINE, EMbase, SIGLE, GreyNet, NTIS, CBMdisc, VIP, CNKI and WANFANG DATA from 1995 to 2010. All the studies were selected, extracted and evaluated by four reviewers independently, and meta-analyses were performed with RevMan 5.0.0 software. Results A total of 15 studies involving 472 participants were included in the review. The studies showed that implantation of the ADM was able to efficiently reduce the incidence of Frey syndrome, and the difference in both subjective and objective was significant between the two groups after the therapy (RR=0.11, 95%CI 0.06 to 0.18, Plt;0.01; RR=0.14, 95%CI 0.10 to 0.19, Plt;0.01). The rate of temporary facial nerve paralysis was lower than that of the control group but the difference was not significant (OR=0.78, 95%CI 0.37 to 1.66, P=0.53). The incidens of both seroma and mucocele were higher than that of the control group but the difference was not significant(OR=2.63, 95%CI 0.09 to 79.25, P=0.58) and they could be alleviated by placing drainage tube and partial pressure bandage. The incidence rate of salivary fistula was lower than that of the control group and the difference was significant (OR=0.24, 95%CI 0.08 to 0.69, P=0.009). Conclusion The result of this system review shows that, the ADM can effectively and safely reduce the incidence of Frey syndrome. To perform preoperative hypersensitivity check for iodine or iodophors, to conduct rapid frozen section for defining the character of tumor, to fix the ADM stably, to place vacuum-drainage and to make partial pressure bandage are suggested.

    Release date:2016-08-25 02:48 Export PDF Favorites Scan
  • Biological and Biomechanical Properties of Acellular Porcine Aortic Valve Stabilized by Dye Mediated Photo Oxidation

    Objective To investigate the biological and biomechanical characteristics of acellular porcine aortic valve with dye mediated photo oxidation so that a new and better bioprosthetic valve materials can be obtained. Methods Thirty porcine aortic valves were divided into three groups with random number table. Acellular valves (n=10) were stabilized by dye mediated photo oxidation in dye mediated photo oxidation group; acellular valves (n=10) were stabilized by glutaraldehyde in glutaraldehyde group; and acellular valves (n=10) were acellularized only in acellular valves group. Thickness, appearance, histology, water content, shrinkage temperature, breaking strength and soluble protein level of acellular porcine aortic in three groups were tested respectively. Results There were light blue, soft, flexible and unshrinking valves in dye mediated photo oxidation group. Compared to valves in glutaraldehyde group, valves in dye mediated photo oxidation group had lighter thickness(0.26±0.09mm vs. 0.38±0.08mm,Plt;0.05), more water content(86.30%±4.03% vs. 71.10%±3.23%,Plt;0.05), and lower shrinkage temperature (76.30±0.70℃ vs. 87.70±0.30℃,Plt;0.05); while these indexes had no statistically significant differences compared to those in acellular valves group. At the same time, compared to valves in acellular valves group, valves in dye mediated photo oxidation group had more breaking strength(17.33±2.65 mPa vs. 9.11±0.95 mPa,Plt;0.05) and lower soluble protein level(0.039%±0.013% vs. 0.107%±0.024%,Plt;0.05); while these indexes had no statistically significant differences compared to those in glutaraldehyde group. Conclusion Acellular porcine aortic valve stabilized by dye mediated photo oxidation has nice biological and biomechanical characteristics.

    Release date:2016-08-30 06:08 Export PDF Favorites Scan
  • Progress of the Research of Artificial Esophagus

    In the past fifty more years, many research results have been achieved in the field of artificial esophagus which has been a major subject of surgical study on esophagus. Unfortunately,a very satisfactory artificial esophagus has not been found due to lack of proper artificial materials and problems of postoperative complications which results in great hindrance to applying them to clinical purpose. The current research focuses on artificial esophaguses constructed with acellular matrix as well as constructed through tissue engineering,furthermore,how to prevent and cure postoperative complications is still the main difficulty. This paper gives an overview of the recent study results,points in dispute, present status of research and the recent advances, and an overview to the future of artificial esophagus.

    Release date:2016-08-30 06:22 Export PDF Favorites Scan
  • Experimental Study of Small-caliber Vascular Xenograft for Coronary Artery Bypass Grafting

    Objective To develop a new small-caliber vascular xenograft and evaluate the feasibility of xenogenic artery for coronary artery bypass grafting. Methods Canine carotid arteries were decellularized by detergent and enzymatic extraction. All decellularized xenografts were randomly divided into two groups. Heparin-linked group (n=24): grafts were then covalently linked with heparin. Non-heparin-linked group (n=24): as control. Xenografts in two groups were implanted in rabbits' left and right carotid artery respectively as bypass grafts. Graft patency was checked by ultrasonography after 3 weeks, 3 and 6 months. Grafts were harvested after 3 and 6 months. Microscopic observation and immunohistochemical staining were performed. Results All the cells were removed while the extracellular matrix were well preserved observed. Heparin was successfully linked to the grafts through their whole thickness. There was no obstruction at both sides after implantation of the grafts, while less thrombus was found in the decellularized heparin-linked grafts than in the other side. Smooth muscle cells densely populated the graft wall and endothelial cells covered the lumen at 3 months after implantation. Conclusion Canine common carotid artery treated by detergent and enzymatic extraction and heparin linkage may be a new small-caliber vascular xenograft for coronary artery bypass grafting.

    Release date:2016-08-30 06:23 Export PDF Favorites Scan
  • Experimental Study of Acellular Bovine Pericardium as Ovine Pulmonary Artery Patch

    ObjectiveTo evaluate the feasibility of using acellular bovine pericardium as a viable tissue engineering vascular patch.MethodsFresh bovine pericardium was treated by enzyme detergent cell extraction, then they were used as vascular patches, ovine jugular vein segments were harvested, separated into endothelial and myofibroblast cells, expanded in cell culture, sequentially seeded onto acellular bovine pericardium patches (3cm×3cm). After 7 days of in vitro culture, the autologous cell/patches as experimental group ( n =5) were used to replace partial pulmonary artery wall. Animals were sacrificed at 4, 6, 8, 12 and 24 weeks. The acellular bovine pericardium patches without autologous cells were used as control group ( n =3). Animals were sacrificed at intervals of 4, 12 and 24 weeks. Explanted patches were evaluated by macroscopic and histologic examinations, assayed for calcium, elastin and collagen content.ResultsAll animals were survived without complications of thrombosis and aneurysm before sacrificed; there was no significant difference in calcium content in two groups; elastin ratio assay showed progressive increase over 4 to 24 weeks, similar to normal pulmonary artery wall, suggesting an ongoing tissue remodeling.ConclusionThe acellular bovine pericardium patch with or without autologous cell seeded to a certain extent can be changed into viable vascular wall tissue after being used to replace partial ovine pulmonary artery wall.

    Release date:2016-08-30 06:24 Export PDF Favorites Scan
  • Acellular Tissue Engineering Heart Valve

    The study of tissue engineering heart valves is one of the focus about cardiovascular surgery and is developing. Especially acellular tissue engineering heart valves have many advantages in low immunogenicity,non cytotoxicity,recellularation,excellent bionics,durability etc.Therefore, the study of acellular tissue engineering heart valves is becoming the important direction of future development about valves studies. Some development about it is reviewed.

    Release date:2016-08-30 06:24 Export PDF Favorites Scan
  • Primary Study of Tissue-engineered Heart Valve Reconstructed on Acellularized Porcine Aortic Valve and Rabbit Bone Marrow Stromal Cells

    Objective To explore the feasibility of tissue-engineered heart valve (TEHV) reconstructed on acellularized porcine aortic valve and rabbit bone marrow stromal cells (BMSCs) in vitro. Methods Acellularized was performed in porcine aortic valve by the detergent and enzymatic extraction process . Morphological and biomechanical properties were compared between the decellularized scaffolds and the fresh valves. Rabbit BMSCs were seeded on the scaffolds. The TEHV were analyzed by light microscopy, electron microscopy and immunohistochemistry. Results Almost complete removal of the cellular components and soluble protein of valves were observed , while the construction of matrix was properly maintained. Biomechanical tests demonstrated no statistically significant change in the breaking intensity (642 ± 102 g/mm2 vs. 636 ± 127g/mm2) and breaking extensibility (62. 2%± 18. 1% vs. 54. 4%±16. 0%) in the porcine values before and after decellularization. Subsequent seeding with rabbit BMSCs on the matrix was so successful that the surface of the scaffold had been covered with a continuous monolayer cells through light microscopy and electron microscopy. Positive of α-smooth muscle actin and negative of CD31 were observed after rabbit BMSCs seeded on the matrix through immunohistochemistry. Conclusion It is feasible to reconstruct TEHV in vitro on acellularized porcine aortic valve scaffold and rabbit BMSCs.

    Release date:2016-08-30 06:26 Export PDF Favorites Scan
  • FABRICATION AND ANALYSIS OF A NOVEL TISSUE ENGINEERED COMPOSITE BIPHASIC SCAFFOLD FOR ANNULUS FIBROSUS AND NUCLEUS PULPOSUS

    Objective To fabricate a novel composite scaffold with acellular demineralized bone matrix/acellular nucleus pulposus matrix and to verify the feasibility of using it as a scaffold for intervertebral disc tissue engineering through detecting physical and chemical properties. Methods Pig proximal femoral cancellous bone rings (10 mm in external diameter, 5 mm in internal diameter, and 3 mm in thickness) were fabricated, and were dealed with degreasing, decalcification, and decellularization to prepare the annulus fibrosus phase of scaffold. Nucleus pulposus was taken from pig tails, decellularized with Triton X-100 and deoxycholic acid, crushed and centrifugalized to prepare nucleus pulposus extracellular mtrtix which was injected into the center of annulus fibrosus phase. Then the composite scaffold was freeze-dryed, cross-linked with ultraviolet radiation/carbodiimide and disinfected for use. The scaffold was investigated by general observation, HE staining, and scanning electron microscopy, as well as porosity measurement, water absorption rate, and compressive elastic modulus. Adipose-derived stem cells (ADSCs) were cultured with different concentrations of scaffold extract (25%, 50%, and 100%) to assess cytotoxicity of the scaffold. The cell viability of ADSCs seeded on the scaffold was detected by Live/Dead staining. Results The scaffold was white by general observation. The HE staining revealed that there was no cell fragments on the scaffold, and the dye homogeneously distributed. The scanning electron microscopy showed that the pore of the annulus fibrosus phase interconnected and the pore size was uniform; acellular nucleus pulposus matrix microfilament interconnected forming a uniform network structure, and the junction of the scaffold was closely connected. The novel porous scaffold had a good pore interconnectivity with (343.00 ± 88.25) µm pore diameter of the annulus fibrosus phase, 82.98% ± 7.02% porosity and 621.53% ± 53.31% water absorption rate. The biomechanical test showed that the compressive modulus of elasticity was (89.07 ± 8.73) kPa. The MTT test indicated that scaffold extract had no influence on cell proliferation. Live/Dead staining showed that ADSCs had a good proliferation on the scaffold and there was no dead cell. Conclusion Novel composite scaffold made of acellular demineralized bone matrix/acellular nucleus pulposus matrix has good pore diameter and porosity, biomechanical properties close to natural intervertebral disc, non-toxicity, and good biocompatibility, so it is a suitable scaffold for intervertebral disc tissue engineering.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • HISTOLOGICAL STRUCTURE AND CYTOCOMPATIBILITY OF NOVEL ACELLULAR BONE MATRIX SCAFFOLD

    Objective To observe the histological structure and cytocompatibility of novel acellular bone matrix (ACBM) and to investigate the feasibility as a scaffold for bone tissue engineering. Methods Cancellous bone columns were harvested from the density region of 18-24 months old male canine femoral head, then were dealt with high-pressure water washing, degreasing, and decellularization with Trixon X-100 and sodium deoxycholate to prepare the ACBM scaffold. The scaffolds were observed by scanning electron microscope (SEM); HE staining, Hoechst 33258 staining, and sirius red staining were used for histological analysis. Bone marrow mesenchymal stem cells (BMSCs) from canine were isolated and cultured with density gradient centrifugation; the 3rd passage BMSCs were seeded onto the scaffold. MTT test was done to assess the cytotoxicity of the scaffolds. The proliferation and differentiation of the cells on the scaffold were observed by inverted microscope, SEM, and live/dead cell staining method. Results HE staining and Hoechst 33258 staining showed that there was no cell fragments in the scaffolds; sirius red staining showed that the ACBM scaffold was stained crimson or red and yellow alternating. SEM observation revealed a three dimensional interconnected porous structure, which was the microstructure of normal cancellous bone. Cytotoxicity testing with MTT revealed no significant difference in absorbance (A) values between different extracts (25%, 50%, and 100%) and H-DMEM culture media (P gt; 0.05), indicating no cytotoxic effect of the scaffold on BMSCs. Inverted microscope, SEM, and histological analysis showed that three dimensional interconnected porous structure of the scaffold supported the proliferation and attachment of BMSCs, which secreted abundant extracellular matrices. Live/dead cell staining results of cell-scaffold composites revealed that the cells displaying green fluorescence were observed. Conclusion Novel ACBM scaffold can be used as an alternative cell-carrier for bone tissue engineering because of thoroughly decellularization, good mircostructure, non-toxicity, and good cytocompatibility.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
6 pages Previous 1 2 3 ... 6 Next

Format

Content