Objective Extracellular matrix is one of the focus researches of the adi pose tissue engineering. To investigate the appropriate method to prepare the porcine skeletal muscle acellular matrix and to evaluate the biocompatibility of the matrix. Methods The fresh skeletal muscle tissues were harvested from healthy adult porcine and were sl iced into2-3 mm thick sheets, which were treated by hypotonic-detergent method to remove the cells from the tissue. The matrix was then examined by histology, immunohistochemistry, and scanning electron microscopy. The toxic effects of the matrix were tested by MTT. Human adi pose-derived stem cells (hADSCs) were isolated from adi pose tissue donated by patients with breast cancer, and identified by morphology, flow cytometry, and differentiation abil ity. Then, hADSCs of passage 3 were seeded into the skeletal muscle acellular matrix, and cultured in the medium. The cellular behavior was assessed by calcein-AM (CA) and propidium iodide (PI) staining at 1st, 3rd, 5th, and 7th days after culturing. Results Histology, immunohistochemistry, and scanning electron microscopy showed that the muscle fibers were removed completely with the basement membrane structure; a large number of collagenous matrix presented as regular network, porous-like structure. The cytotoxicity score of the matrix was grade 1, which meant that the matrix had good cytocompatibil ity. The CA and PI staining showed the seeded hADSCs had the potential of spread and prol iferation on the matrix. Conclusion Porcine skeletal muscle acellular matrix has good biocompatibility and a potential to be used as an ideal biomaterial scaffold for adi pose tissue engineering.
Objective Seed cells are the hotspot of tissue engineering research. To study the seed cells with high potential of adipogenic differentiation for applying the adipose tissue engineering and increasing the constructing efficiency of adipose tissue engineering. Methods Mature adipocytes (MA) and adipose-derived stromal cells (ADSCs) were harvestedfrom human fat aspirates via l iposuction by collagenase digestion. MA were cultured and induced to dedifferentiated adipocytes (DA) by ceil ing adherent culture method. DA and ADSCs were induced to adipogenic differentiation. The adipogenic abil ities of DA and ADSCs were compared by inverted phase contrast microscope observation, absorption spectrometry assay of oil red O staining, and cell counting of oil red O staining. Results MA could dedifferentiate into fibroblast-shaped DA. After adi pogenic differentiation, the inverted phase contrast microscope observation showed that there were much more l i pid droplet in DA than in ADSCs. Absorption spectrometry assay of oil red O staining showed there were significant l ipid droplet aggregation in DA 4 days of adipogenic induction. However, the same phenomenon could be observed in ADSCs at 10 days after differentiation. After 12 days, the absorption value of DA was higher than that of ADSCs, showing significant difference (P lt; 0.05). The cell counting of oil red O staining demonstrated that the adipogenic rates of DA and ADSCs were 65% ± 6% and 35% ± 5%, respectively, showing significant difference (P lt; 0.05). Conclusion The potential of adipogenic differentiation of DA is ber than that of ADSCs. DA is a promising seed cell of adipose tissue engineering.