west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Airway smooth muscle cell" 3 results
  • Eotaxin Expression of Airway Smooth Muscle Cells Induced by Sensitized Serum in Rats

    Objective To observe the eotaxin expression of rat airway smooth muscle cells ( ASMCs) induced by serum from asthmatic rats, and explore the possible mechanism. Methods ASMCs isolated fromrat tracheas were cultured in vivo. Then they were treated with serum from asthmatic rats, or treated with serum and dexamethasone simultaneously. The level of eotaxin protein in supernatant and eotaxin mRNA in ASMCs were measured by ELISA and reverse transcription-polymerase chain reaction. The expression of cAMP in ASMCs was examined by radioimmunoassay. Results After the treatment with sensitized serum, the eotaxin level in supernatant and mRNA expression in ASMCs were significantly higher [ ( 107. 09 ±7. 12) ng/L vs. ( 0. 63 ±0. 56) ng/L, P lt; 0. 05; 1. 39 ±0. 04 vs. 0. 05 ±0. 01, P lt;0. 05] , and the level of cAMP in ASMCs was significantly lower compared with the control group [ ( 17. 58 ±3. 62) ng/L vs. ( 32. 39 ±3. 36) ng/L, P lt; 0. 05] . After intervened by the sensitized serum and dexamethasone simultaneously, the protein and mRNA expressions of eotaxin were lower compared with those intervened by sensitized serumalone [ ( 64. 18 ±4. 04) ng/L and 0. 77 ±0. 19] . The level of eotaxin in supernatant was negatively correlated with cAMP level in ASMCs ( r = - 0. 788, P lt; 0. 01) . Conclusions There is anautocrine function in ASMCs as inflammatory cells after stimulation with sensitized serum. Eotaxin may play an important roll in the pathogenesis of asthma via a cAMP-dependent pathway.

    Release date:2016-08-30 11:53 Export PDF Favorites Scan
  • Effects of 11,12- Epoxyeicosatrienoic Acids on Calcium-Activated Potassium Channel of Airway Smooth Muscle Cells in COPD Rats

    Objective To explore the activity of Ca2 + -activated K+ ( KCa) inairwaysmoothmuscle cells( ASMCs) in a rat model of chronic obstructive pulmonary disease( COPD) , and to observe the effect of 11, 12-Epoxyeicosatrienoic acid( 11, 12-EETs) on the KCa channel of ASMCs. Methods Forty male Sprague-Dawley rats were randomly assigned to a COPD group and a normal control group. The rats in the COPD group were exposed to cigarette smoking in a relatively closed chamber to induce COPD. The ASMCs were isolated from small bronchi using an acute enzymatic digestion method. In the symmetrical high K+ solution,the KCa currents were separated with inside-out configuration using the patch clamp technique. The activity of KCa currents in ASMCs between the COPD group and the normal group were compared and the effect of 11, 12-EETs on KCa channel was recorded. The opening probability( Po) , opening time( To) and closing time ( Tc) of the KCa were measured. Results Compared with the normal group, Po of KCa in the COPD rats was much shorter ( 0. 084 ±0. 028 vs 0. 198 ±0. 029, P lt; 0. 01) , To was shorter [ ( 0. 732 ±0. 058) ms vs ( 1. 648 ±0. 152) ms, P lt; 0. 01] and Tc was longer[ ( 12. 259 ±2. 612) ms vs ( 6. 753 ±1. 237) ms, P lt;0. 01] . 11, 12-EETs can evoke the activity of KCa currents of ASMCs in the COPD rats while Po was increased( 0. 227 ±0. 059 vs 0. 084 ±0. 028, P lt; 0. 01) , To was much longer[ ( 2. 068 ±0. 064) ms vs ( 0. 732 ±0. 058) ms, P lt; 0. 01] , and Tc was shorter [ ( 4. 273 ±0. 978) ms vs ( 12. 259 ±2. 612) ms, P lt;0. 01] .Conclusions The results suggest that the decreasing of KCa activity plays an important role in the development of COPD. 11,12-EETs can directly evoke the activity of KCa channel in COPD rats, thus relax the airway smooth muscles.

    Release date:2016-09-14 11:23 Export PDF Favorites Scan
  • Effects of Adiponectin on Proliferation of Airway Smooth Muscle Cells and Activation of Adenosine Monophosphate-Activated Protein Kinase

    Objective To investigate the effect of adiponectin on proliferation of airway smooth muscle cells( ASMCs) , and explore its possible mechanism. Methods ASMCs were derived fromrat airway tissue and were cultured in vitro. RT-PCR was used to verify the expression of adiponectin receptors on ASMCs. Then ASMCs were treated with adiponectin at different concentrations( 5, 10, 20, 40, 80 μg/mL) for different periods of time( 1, 12, 24, 48, 72 hours) , respectively. The absorbsence ratios of adiponectin at different concentrations were determined by MTT assay. The adenosine monophosphate-activated protein kinase( AMPK) and phosphorylated AMPK( pho-AMPK) in ASMCs were quantified by Western blot after being treated with adiponectin at different concentrations ( 5, 10, 20, 40 μg/mL) for 48 hours. ResultsThe inhibition of adiponectin on ASMCs was showed in dose-dependent manner( r = 0. 324, P lt; 0. 01) and time-dependent manner( r = 0. 607, P lt; 0. 05) . Western blot indicated that the expression of pho-AMPK increased with the increased concentrations of adiponectin( r =0. 607, P lt; 0. 01) . The ratio of pho-AMPK/AMPK were ( 27. 66 ±1. 03) % , ( 31. 91 ±0. 86 ) %, ( 75. 52 ±2. 67) % , and ( 84. 50 ±1. 05) % ,respectively, with significant differences between each concentrations of adiponectin( P lt; 0. 05) . There was no expression of pho-AMPK in the control group. Conclusion Adiponectin can significantly inhibit ASMCs’proliferation by activating AMPK.

    Release date:2016-08-30 11:53 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content