Objective To investigate the clinical therapeutic effects of two types of vaginoplasty. Methods From January 1996 to March 2005, 63 patients wih the congenital absence of the vagina were treated by two types of vaginoplasty. Of the 63 patients, 37 underwent vaginoplasty using the amnion and 26 underwent an improved laparoscopic Vecchitti operation. The durations ofthe operation and hospitalization, as well as the blood loss were compared between the two types of vaginoplasty. The vaginal moulds were improved during the operations. Results According to the follow-up for 2 months to 4 years in the 35 patients. Compared with vaginoplasty using the amnion, vaginoplasty by an improved laparoscopic Vecchitti operation had advantages of significantly shorter surgical duration, shorter hospitalization, and less blood loss (Plt;0.05). After the operations, the artificial vagina of all the 63 patients could hold a speculum and the mucosa appeared so soft and smooth with normal lubrication. The married patients were satisfied with the intercourse. However, after vaginoplasty using the amnion, an infection of the amnion occurred in 3 patients, scar contracture in 2 patients, one of whom underwent scar incision 13 months after operation with a success; but the other refuse to accept another operation. But the improved laparoscopic Vecchitti operation achieved a success in the patients without any infectionor scar contracture, according to the 2 month-2.5 years follow-up. Conclusion The improved laparoscopic Vecchitti operation is a preferred procedure of constructing a vagina for the patients suffering from the congenital absence of the vagina.
Objective To observe the differentiation effect of rabbit amnion-derived stem cells (ADSC) induced into neural cells.Methods ADSC of New Zealand female rabbits were isolated and cultured. Its mRNA level of Fibronectin, Nestin and Vimentin were detected by real-time quantitative polymerase chain reaction. The selfreplication ability of ADSC was confirmed by monoclonal formation experiments. These ADSC were further induced into neural cells in vitro. Five days after induced differentiation, the expression of -tubulin and glial fibrillary acidic protein (GFAP) were detected by immunofluorescent staining. Results ADSC were separated from amnion tissue gradually after 24 hours. There were polygonal cells gathered around the amnion tissue at 72 hours, and were distributed compactly around the amnion at 120 hours. The morphology of cleavage daughter cells was basically the same as parent cells. ADSC has the ability of self-replication. The Nestin, Vimentin, Fibronectin mRNA expressions in ADSC were 15.79, 1.91, 7.65 times those in spleen cells. The differences were statistically significant(Z=-5.243, -3.972, -2.524; P<0.05). The beta;-tubulin expression was found in cytoplasm of most cells. The GFAP expression was found in cytoplasm in some cells. Conclusions ADSC has self-replication ability. It can be induced into neurons and neuroglial cells under the right conditions.
Objective To observe the effect of amniotic homogenate on closing holes in experimental rhegmatogenous retinal detachment and investigate its mechanism. Methods Forty rabbits were randomly divided into group A, B, C and D with 10 rabbits in each group. Group A and C were the treatment groups, and group B and D were the control groups. All eyes of rabbits underwent pars plana vitrectomy, retinectomy, and fluidair exchange. The surface of the breaks was treated with 01 ml amniotic homogenate in experimental groups and 0.1 ml PBS in control groups. At the end of operation, 20% SF6 was tamponaded and the retina reattaced. The animals were executed 14 (group A and B) and 28 days (group C and D) after the surgery. The tissue sections were observed by light microscope, electron microscope and immunocytochemistry method. Results Fourteen days after the surgery, the retina reattached in 6 eyes in group A (60%) and 2 eyes in group B (20%) (P=0.021). Twenty-eight days after the surgery, the retina reattached in 8 eyes in group C (80%) and 3 eyes in group D (30%) (P=0.046). The difference of the rate of retinal reattachment among the 4 groups were statistical significant (Plt;0.05). Light postoperative inflammation of ocular anterior segment was observed, which was controlled 3-5 days after treated with topical steroids. The result of light microscopy showed that the eyes in treatment groups had multilayer of fibroblastlike cells around the retinal breaks, adhering to the choroid and retinal pigment epithelial cells. The proliferative cells around the retinal breaks obvious less in control groups than that in the treatment groups, and the retina could not adhere to the choroid. The results of electron microscopy were the same as that of light microscopy. Immunohistochemistry staining of the fibroblastlike cells revealed positve glial fibrillary acidic protein, which suggested that the proliferative cells around the retinal breaks were retinal glial cells. Conclusions Amniotic homogenate helps to seal retinal breaks and promote retinal reattachment by stimulating the proliferation of retinal glial cells around the breaks.
Objective To observe the effects of culture medium of amniotic cells on NO and NOS in retinal tissues of rabbits in vitro in order to provide a protective method for antioxidation in retina transplantation. Methods Thirty adult healthy rabbits (30 right eyes) were divided into 3 groups. Group I: fresh retinal tissue; group II: routine culture medium; group III: culture medium of amniotic cells. The retinal tissues in group II and III were cultured in the corresponding culture medium for 1 week. The content of NO and NOS in retinal tissues in the 3 groups were determined. Results Compared with group I, the content of NO and NOS of group II increased obviously (t=3.821, 3.854; P<0.001). There was no statistical difference of content of NO and NOS between group I and III (t=1.657, 1.745; P>0.05). Conclusion Culture medium of amniotic cells may remove free radicals and enhance the ability of antioxidation. (Chin J Ocul Fundus Dis,2004,20:366-368)