west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Angiotensin Ⅱ" 4 results
  • Simvastatin can prevent hypoxic pulmonary hypertension in rats through suppressing the expression of Angiotensin Ⅱ Receptor-1

    Objective To investigate the preventive effect of simvastatin,a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor,on hypoxic pulmonary hypertension and the relation between it and the angiotensin Ⅱ receptor-1(AT1R) expression in pulmonary arteriole.Methods Thirty male Sprague-Drawley rats were randomly allocated into three groups:a control group,a hypoxic group and a simvastatin preventive group.The animal model of hypoxic pulmonary hypertension was established by exposing the rats to normobaric hypoxic condition(8 h×6 d×3 w),and the preventive group were treated with simvastatin 10 mg/kg before hypoxic processing while the control and hypoxic groups were treated with sodium chloride.The mean pulmonary pressure(mPAP),serum cholesterol concentration,right ventricular hypertrophy index [RV/(LV+S)],percentage of the wall thickness in the external diameter(WT%),percentage of the wall area in the total vascular area(WA%),and the AT1R expression in pulmonary arterioles were measured.Results When compared with the hypoxic group,in the preventive group,the mPAP and RV/(LV+S)obviously reduced [(22.6±3.86)mm Hg vs (29.3±2.27)mm Hg,(25.13±0.75)% vs (33.18±1.58)%,Plt;0.01 respectively],the indices of wall thickness of rat pulmonary arteriole and area also decreased significantly [WT%:(15.98±1.96)% vs (25.14±1.85)%;WA%:(54.60±3.94)% vs 74.77±4.52)%;Plt;0.01 respectively],and the positive degree of AT1R still lessened noticeably(1.23±0.09 vs 1.57±0.13,Plt;0.01).All of the indices above in the hypoxic group increased markedly compared with the control group(Plt;0.01 respectively).However,the differences of serum cholesterol among three groups were not significant(Pgt;0.05).Conclusions Simvastatin can suppress the expression of AT1R in pulmonary vessel and prevent hypoxic pulmonary hypertension.

    Release date:2016-08-30 11:35 Export PDF Favorites Scan
  • The Role of Renin-Angiotensin System in Acute Lung Injury and Acute Respiratory Dysfunction Syndrome

    Objective To explore the role of renin-angiotensin system( RAS) in acute lung injury( ALI) /acute respiratory dysfunction syndrome( ARDS) by using amouse cecal ligation and puncture ( CLP)model.Methods The ALI/ARDS animal models were assessed bymeasuring blood gas, wet/dry lung weight ratio( W/D) , and lung tissue histology 18 hours after CLP operation. After the ALI/ARDS models was successfully established, immunohistochemistry, western blotting and radioimmunity were used to investigate the changes of several key enzymes of RAS, such as ACE, ACE2 and Ang Ⅱ. In addition, two groups of animals received a separate intraperitoneal injection of angiotensin-converting enzyme ( ACE) inhibitor captopril or recombinant mouse ACE2 ( rmACE2) after CLP, then the changes of RAS in ALI/ARDS modelswere observed. Results The extensive lung injuries can be observed in the lung tissues from CLP-treated animals 18 hours after operation. The CLP-induced ALI/ARDS led to an increase in the wet/dry weight ratio of the lung tissues, and a decrease in the PaO2 /FiO2 [ ( 194. 3 ±23. 9) mm Hg vs ( 346. 7 ±20. 5) mm Hg,P lt;0. 01] . Immunohistochemistry and western blotting tests of the lung tissues from CLP-treated animals showed a decrease in the ACE2 protein level. However, in both the CLP and sham mice there were no significant differences between the two groups. CLP markedly increased Ang Ⅱ level in lungs and plasma of mice, and RAS drugs significantly impacted the Ang Ⅱ levels of mice. Compared with the CLP group,captopril or rmACE2 led to a decrease of the Ang Ⅱ level in mice [ Lung: ( 1. 58 ±0. 16) fmol /mg,( 1. 65 ±0. 21) fmol /mg vs ( 2. 38 ±0. 41) fmol /mg; Plasma: ( 178. 04 ±17. 87) fmol /mL, ( 153. 74 ±10. 24) fmol /mL vs ( 213. 38 ± 25. 44) fmol /mL] . Conclusions RAS activation is one of the characteristics of CLP-induced ALI/ARDS in mice models. ACE and ACE2 in RAS have a different role in the regulation of AngⅡ synthesis, while ACE has a positive effect in generating AngⅡ, and ACE2 shows a negative effect.

    Release date:2016-08-30 11:53 Export PDF Favorites Scan
  • EFFECT OF ANGIOTENSIN Ⅱ ON TRANSFORMING GROWTH FACTOR β-INDUCED FIBROBLAST PROLIFERATION IN HUMAN SKIN

    Objective To observe the effect of angiotensin Ⅱ (Ang Ⅱ) or/and transforming growth factor β(TGF-β) on human skin fibroblast proliferation, and to explore the possible signaling mechanism involved in their actions. Methods Cultured human skin fibroblasts were treated with different concentrations of Ang Ⅱ (1×10-10 , 1×10-9,1×10-8 and 1×10-7 mol/L) , TGF-β(0.1, 1.0 and 10.0 ng/ml), and 1×10 -10 mol/L Ang Ⅱ+0.1 ng/ml TGF-β, respectively. The cell proliferation was determined by3Hthymidine (3H-TdR) incorporation. The phosphorylation of extracellular signalregulated kinases (ERK) was detected by Western blot. Results Ang Ⅱ at 1×10-9,1×10-8,1× 10-7 mol/L or TGF-β at 1.0, 10.0 ng/ml increased 3H-TdR incorporation into cultured skin fibroblasts dose-dependently. Ang Ⅱ and TGF-β at lower doses (1×10-10 mol/L and 0.1 ng/ml, respectively) did not affect 3H-TdR incorporation into fibroblasts (Pgt;0.05), whereas co-administration of both Ang Ⅱ and TGF-β at these doses significantly increased 3H-TdR incorporation intofibroblasts(Plt;0.05). Ang Ⅱ at 1×10-7 mol/L or TGF-β at 10.0 ng/ml significantly increased ERK phosphorylation of fibroblasts after stimulation (Plt;0.01). Smaller doses of Ang Ⅱ (1×10-10 mol/L) or TGF-β (0.1 ng/ml) did not influence ERKphosphorylation of fibroblasts, whereas co-administration of Ang II and TGF-β at these doses significantly enhanced ERK phosphorylation (Plt;0.05). Total protein levels of ERK did not differ at different doses. Conclusion These results indicate that Ang Ⅱ and TGF-β synergistically increase skin fibroblast proliferation, which is at least partly via enhancement of ERK activity.

    Release date:2016-09-01 09:26 Export PDF Favorites Scan
  • Research on Potential Role of Receptor-interacting Protein Kinase1 in Phenotype Switching of Vascular Smooth Muscle Cells

    Vascular smooth muscle cells (VSMCs) phenotype switching plays an essential role in the pathogenesis of various vascular diseases. The present study aims to investigate the role of receptor-interacting protein kinases 1(RIPK1) in VSMCs phenotypic switching induced by Angiotensin Ⅱ(Ang Ⅱ). Expression of mRNA and protein of RIPK1, markers of VSMCs phenotypic switching and secretion, phosphorylation of the P65 subunit of NF-κB were measured by real-time PCR and Western blot. Meanwhile, EdU incorporation assay and wound scratch assay were performed to determine the cell proliferation and migration respectively. At the same time, Necrostatin-1(Nec-1, an known RIPK1 inhibitor) and RIPK1-specific small interference RNA (siRNA) were used to inhibit the expression of RIPK1. The experimental data demonstrated that the mRNA and protein levels of RIPK1 and P65 phosphorylation were increased significantly in the process of VSMC phenotypic switching induced by Ang II. Moreover, the expression of RIPK1 and P65 phosphorylation were significantly down-regulated in VSMCs pretreated with Nec-1 or trans-fected with RIPK1-siRNA. Furthermore, the proliferation, secretion and migration of VSMCs were also markedly suppressed after inhibition of RIPK1 by Nec-1 or its specific siRNA. The results suggested that RIPK1 might be involved in VSMC phenotypic switching induced by Ang II, which was possibly via up-regulating the NF-κB signaling pathway.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content