This study aims to construct the recombinant lentivirus vector containing specific small interfering RNA (siRNA) targeting rat CREB binding protein(CBP)gene and to identify its function of inhibiting the expressions of acetylated histone in primarily cultured hippocampal neurons. Firstly, we constructed four kinds of recombinant lentivirus siCBP. And then we used them to infect the primarily cultured hippocampal neurons, and performed real-time PCR, western blot respectively to detect the expressions of CBP. Afterwards, the most effective lentivirus siCBP was used to infect the primarily cultured hippocampal neurons, and then the HAT activity and protein expressions of acetylated histone Ac-H3, Ac-H4 of the neurons were examined. By using PCR, endonuclease cutting and gene sequencing, we confirmed that the target genes were correctly cloned in lentivirus vector. Besides, CBP mRNA and protein expressions in neurons were found to be with varying degrees of decreases after infections of the four kinds of lentivirus siCBP. Furthermore, the representative and most effective lentivirus GR806 could effectively inhibit the HAT activity and the protein expressions of Ac-H3, Ac-H4 in neurons. It provides the experimental basis for the subsequent application of siCBP to clarify the effects and corresponding molecular mechanism of the CBP-dependent histone acetylation on learning and memory function in hippocampus.
The purpose of this study is to investigate the effect of superparamagnetic chitosan FGF-2 gelatin microspheres (SPCFGM) on the proliferation and differentiation of mouse mesenchymal stem cells. The superparamagnetic iron oxide chitosan nanoparticles (SPIOCNs) were synthesized by means of chemical co-precipitation, combined with FGF-2. Then The SPCFGM and superparamagnetic chitosan gelatin microspheres (SPCGM) were prepared by means of crosslinking-emulsion. The properties of SPCFGM and SPIONs were measured by laser diffraction particle size analyser and transmisson electron microscopy. The SPCFGM were measured for drug loading capacity, encapsulation efficiency and release pharmaceutical properties in vitro. The C3H10 cells were grouped according to the different ingredients being added to the culture medium: SPCFGM group, SPCGM group and DMEM as control group. Cell apoptosis was analyzed by DAPI staining. The protein expression level of FGF-2 was determined by Western blot. The proliferation activity and cell cycle phase of C3H10 were examined by CCK8 and flow cytometry. The results demonstrated that both of the SPIOCNs and SPCFGM were exhibited structure of spherical crystallization with a diameter of (25±9) nm and (140±12) μm, respectively. There were no apoptosis cells in the three group cells. Both the protein expression level of FGF-2 and cell proliferation activity increased significantly in the SPCFGM group cells(P<0.05). The SPCFGM is successfully constructed and it can controlled-release FGF-2, remained the biological activity of FGF-2, which can promote proliferation activity of C3H10 cells, and are non-toxic to the cell.