ObjectiveTo investigate the expression of histone deacetylase 2 (HDAC2) in animal model of benign tracheal stenosis, and explore the mechanism of HDAC2 in development of tracheal stenosis.MethodsEighteen rabbits were randomly divided into a blank control group, a model group, and an erythromycin group, with 6 rats in each group. The model group and the erythromycin group underwent tracheostomy, the inner wall of trachea was brushed back and forth with a nylon brush for more than 20 times to induce benign tracheal stenosis. From 7 days before surgery to 9 days after surgery, the model group received gavage with saline, the erythromycin group received gavage with low-dose erythromycin in dose of 15 mg·kg–1·d–1, and the control group did not receive any treatment. On the 10th day after operation, all the rabbits were sacrificed and the trachea was cut to measure the tracheal stenosis. RNA and protein were extracted from the granulation tissue in the stenosis and the relative mRNA expressions of HDAC2, interleukin (IL)-6 and IL-8 in the granulation tissue were detected by real-time fluorescence quantitative PCR. The relative expression of HDAC2 protein was detected by Western blot.ResultsCompared with the blank control group, the tracheal stenosis in the model group was more obvious [(84.60±1.14)% vs.(27.00±6.44)%], the mRNA and protein expressions of HDAC2 were decreased (0.29±0.07 vs. 1.00±0.00, 0.20±0.02 vs. 0.49±0.04), the mRNA expressions of IL-6 and IL-8 were up-regulated (4.22±0.67 vs. 1.00±0.00, 162.72±23.23 vs.1.00±0.00). Compared with the model group, tracheal stenosis in the erythromycin group was relieved [(64.00±12.25)% vs. (84.60±1.14)%], the mRNA and protein expressions of HDAC2 were increased (0.42±0.14 vs. 0.29±0.07, 0.43±0.01 vs. 0.20±0.02), the mRNA expressions of IL-6 and IL-8 were decreased (0.72±0.24 vs. 4.22±0.67, 130.22±7.93 vs. 162.72±23.23). All the differences were statistically significant (all P<0.05). The Pearson correlation coefficient between tracheal stenosis and HDAC2 mRNA relative expression was –0.96 (P<0.05).ConclusionsThe down-regulation of HDAC2 expression in model of benign tracheal stenosis is related to the occurrence and development of tracheal stenosis. The low dose of erythromycin may be used to treat benign tracheal stenosis by up-regulating expression of HDAC2 and thus inhibiting the inflammatory disorder during tracheal injury repair.
ObjectiveTo establish a simple and stable model of benign tracheal stenosis in SD rats by nylon brush scraping induced mechanical injury, and to observe the pathological changes of tracheal tissue at different time points after modeling.MethodsTwenty SD rats were divided into sham operation group (10 rats) and stenosis model group (10 rats) by random number method. Symptoms and survival conditions were observed, tracheal tissues were obtained, granulation tissue proliferation was observed, and stenosis indexes were measured and compared. Another fifteen rats were sacrificed at different time points (days 0, 2, 4, 6, and 8) after modeling. Tracheal tissues were obtained, HE staining and Masson staining were performed to observe pathological changes with time.ResultsThe survival rate of the sham operation group was 100% on the 8th day after operation, and the survival rate was 0% on the 8th day after operation in the stenosis model group. The difference in survival condition between the two groups was statistically significant (P=0.000 1) by Log-rank test. The stenosis index in the sham operation group was (6.12±1.78)%, and in the stenosis model group was (60.28±12.56)%. The difference in the stenosis between the two groups was statistically significant (P<0.000 01). HE staining results showed that the tracheal lumen was unobstructed and no granulation tissue hyperplasia or stenosis was found in the sham operation group. The epithelial mucosa was intact and smooth, and the cilia structure was clearly visible. It was a pseudo-stratified ciliated columnar epithelium, which was consistent with the characteristics of normal airway mucosa. While in stenosis model group, the lumen was significantly narrowed, and the stenosis was mainly caused by granulation tissue hyperplasia. No epithelial structure was observed, or epithelial structure was extremely abnormal. Masson staining showed that the fibroblasts in the injured site increased first and then decreased, and the collagenous fiber (blue) in the injured site gradually increased with time.ConclusionsA model of benign tracheal stenosis in rats can be successfully established by nylon brush scraping induced mechanical injury. The modeling method is simple, controllable and reproducible. The model can be widely used in the investigation of pathogenic mechanism for benign airway stenosis and efficacy exploration of new treatment.