west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Bio-derived bone" 7 results
  • YNERGISTIC EFFECT OF FIBRONECTION AND BASIC FIBROBLAST GROWTH FACTORON OSTEOBLAST ADHESION EFFICIENCY y, Nanjing Jiangsu, 210029, P. R. China.

    Objective To investigate effects of the basic fibroblast growth factor (bFGF) and fibronection (FN) on the osteoblast adhesion on the bio-derived bone. Methods The third generation of the osteoblast was treated with bFGF 0.1, 1, 10, and 100 ng/ml, respectively, and then was seeded in the bioderived bone, which had been modified with FN 0.1, 1, 10, and 100 μg/ml, or Polylysine, respectively. The cell adhesion was measured by the MTT assay. The cell density and the cell appearance were observed by the scanning electron microscope. The abovementioned procedures were repeated by an application of the GRGDS peptide. Results Both FN and bFGF could enhance the osteoblast adhesion efficiency on the bioderived bone (Plt;0.05). However, the osteoblast adhesion efficiency could be significantly strengthened bya combined use of FN and bFGF. FN and bFGF had a significant synergistic effectin statistics (Plt;0.01), but Polylysine and bFGF had no such synergistic effect (P>0.05). The combined use of FN and bFGF had a better effect on the cell density and the cell appearance than either of them when observed with the scanning electron microscope. Adhesion efficiency generated by the combined use of FN and bFGF was significantly blocked by the application of the GRGDS peptide. Conclusion The combined use of FN and bFGF has a significant synergistic effect on the osteoblast adhesion efficiency on the bioderived bone. This effect is probably mediated by the RGD-integrin α5β1 pathway.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • BIO-DERIVED BONE MATERIAL

    Objective To review researches on bone defect repaired by different kinds of bio-derived bone. Methods The recent relevant literatures were extensively investigated. Preparation of bio-derived bone and effect of bone defect repair were reviewed.Results Theallogeneic and xenogeneic bone treated by different physicochemical method werenot only the substitution for bone but also the scaffold material co-cultured with seed cells to reconstruct tissue engineered bone. Conclusion The tissue engineered bioderived bone is a breakthrough for treatment of bone defect.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON REPAIR OF GOAT TIBIA DEFECT WITH MARROW STROMALCELL ANDBIO-DERIVED BONE

    Objective To investigate the feasibility of repairing goat tibia defect with marrow stromal cells (MSCs).Methods MSCs were cocultured with the bio-derived bone in vitro, and the 20 mm tibia defectswere made and fixed with plate in 35 goats, and they were divided into the experimental group, control group and blank group. The defects on the right side were filled with tissue engineering bone as the experimental group, the defects onthe left side with bio-derived bone as the control group in 33 goats, and the defect on the both sides were not filled with any materials as the blank group in 2 goats. Threpair capability was assessed physically, histopathologically and biomechanically at 2, 4, 6, 8, 12,16 and 24 weeks after operation in 3 groups.Results By physical, histopathological and biomechanical examinations, the bio-derived bone was partially absorbed in the experimental group and was rarely absorbed in the control group in the 4th week; the defects were partially repaired in the experimental group, and in the control group, few new bones were observed in the two ends of the implants, in which there was fibrous tissue. The effects of biomechanics had no statistically significant difference between the experimental group and the control group(P>0.05) in the 8th week; the defects were perfectly repaired in the experimental group and the effects of biomechanics had statistically significant difference between two groups (P<0.05) in the 12th weeks. The defects were not repaired in the 24th week in the blank group.Conclusion The tissue engineering bone can efficiently repair bone defect, and itsrepair capability is better than that of bio-derived bone alone both in quantity and in quality of bone formation.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON REPAIRING SEGMENTAL BONE DEFECT WITH BIO-DERIVED BONE PRESERVED BY VARIOUS METHODS

    Objective To study the difference of repairing segmental bone defect with bio-derived bone preserved by various methods.Methods Freeze-dried biomaterials had been stored in two different preservation solutions for three months,while the biomaterials stored for same period were observed as control group. The experimental model of 15 mm radial segmentaldefect was made in 60 New Zealand white rabbits, which were divided into groups A,B and C according to transplant materials preserved by various methods. Groups A and B were deeply divided into A1 and A2 subgroups, B1 and B2 subgroups according to whether materials were cocultured with osteoblasts. Tissue engineered bone was used to repair bone defects of left limbs in A1 and B1 subgroups, while simple material to repair defects of right limbs in A2 and B2 subgroups. Group C was divided into C1 and C2 subgroups. Freeze-dried material was used to repairbone defects of the left limbs, while defects of the right limbs as blank control group. The samples were harvested and observed by the roentgenographical, histomorphological, biomechanical and computerized graphical analysis at 4,8 and 16 weeks. Results All of the defects treated with implants exhibited new bone formation 4, 8 and 16 weeks postoperatively, increasing with time. The radiological, histomorphological and biomechanical evaluation showed that the ability of new bone formation was arranged in 6 subgroups as follows:A1gt;A2gt;C1gt;B1gt;B2gt;C2, the difference was significant between them (P<0.001, P<0.05).The ability of new bone formation was best and at 16 weeks the defect was bridged with the appearance of marrow cavities in A1 subgroup, the biomechanicalproperties in implants approached to those of normal bone. Conclusion The choice of proper preservation solution can improve the ability of repairing bone defect.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF BONE INFECTION ON WO-1 CONTROLLED-RELEASE SYSTEM

    Objective To develop a new tissue engineering bone material which has an antiinfective function. Methods Collagen loaded bio-derived bone material was made by using type I collagen and allograft bone. WO-1was absorbed to collagen loaded bio-derived bone, then the morphological feature of the new bone material was observed by scanning electronic microscopy.3 H tetracycline was diluted by WO-1 solution, and was absorbed to collagen loaded bio-derived bone,then the releasing kinetics of WO-1 was detected by 3 Htetracycline in vitro. WO-1 bioderived bone material was grafted into a culturemedium with staphylococcus aureus, escherichia coli, and pseudomonas aeruginosato observe its bacteriostasis ability. WO-1 bio-derived bone material was grafted into radius of defected rabbits, the concentration of WO-1 was detected onthe 9th, 16th, 23th, and 30th day byHLPC in blood, in bone and in muscle. The bacteriostasis ability of WO-1 loaded bio-derived bone was tested in vitro and in vivo. Results WO-1 loaded bioderived bone maintained natural network pore system and the surface of network pore system was coated with collagen membrane. The release of WO-1 from WO-1 loaded bioderived bone showed bursting release on the 1st day, then showed stable release. WO-1 loaded bioderived bone showed lasting and stable bacteriostasis to common pathogens of orthopaedic infections. The high concentration of WO-1 was observed in bone tissue and in muscle tissue at differenttime points and the difference among groups had no significance(P>0.05), while the concentration of WO-1 in blood was very low(P<0.05). Conclusion WO-1 loaded bioderived bone has good capability of drug controlled-release and bacteriostasis. 

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • EFFECT OF VARIOUS STORAGE METHODS ON CELLULAR COMPATIBILITY OF BIO-DERIVED BONE

    Objective To study the effect of various storage methods on cellular compatibility of bio-derived bone. Methods Freeze dried biomaterials had been stored in two different preservation solutions for three months, while the biomaterials stored for the same time were observed as control group. The experiment was divided into groups A, B, C and D according to different storage methods (group A: with materials stored in preservation solution 1; group B:with materials stored in preservation solution 2; group C:with freeze-dried materials; and group D: simple osteoblasts). Osteoblasts at 2×106/ml had been cocultured with materials for 1, 3, 5, and 7 days.The cell-material complexwas observed under phase microscope and electronic scanning microscope to evaluate the adhesion and growth of osteoblasts; the cell viability and alkaline phosphatase(ALP) activity were measured,and the cell cycle wasanalysed by flow cytometer.WTHZ〗Results Osteoblasts adhered to materials preserved by different methods,differentiated and proliferated in the hole of materials. The difference of cell viability was not significant between three groups on day 1 andday 3. The cell viability of osteoblasts adhered to three materials was Agt;Cgt;B group on day 5 and day 7 (Plt;0.01,Plt;0.05). The ALP activity of osteoblasts adhered to three materials was Agt;Cgt;B group on day 7(Plt;0.01).The cell cycle of differentgroups did not change significantly,the abnormal cells were not seen. Conclusion The choice of proper preservation solution can optimize the cellular compatibility of bio-derived bone.

    Release date: Export PDF Favorites Scan
  • RADIOLOGICAL STUDY ON REPAIR OF GOAT TIBIA DEFECT WITH MARROW STROMAL STEM CELLS AND BIODERIVED BONE

    Objective To investigate the ability to repair goat tibia defect with marrow stromal stem cells (MSCs) and bio-derived bone, and the feasibility of the compounds as bone substitute material. Methods MSCs were cultured with the bioderived bone in vitro, and the 20 mm tibia defect of goat was made and fixedwith plate. Eighteen goats were divided into experimental group, control group and blankgroup. The defects were not filled with anything in blank group, with tissue engineering bone in experimental group and bio-derived bone in control group. Therepair capability was assessed by physical, X-ray and bone mineral density examinations8,12,16, and 24 weeks after operation. Results In experimental group, the defects were partially repaired 8 weeks, and completely repaired12 and 16 weeks; there was significant difference in bone density between experimental group and control group (P<0.05) 8,12 and 16 weeks, but no significant difference 24 weeks. The defects of blank group were not repaired 24weeks. Conclusion The tissue engineering bone can efficiently repair bone defect, and its repair capability is better than that of bio-derived bone alone both in quantity and quality of boneformation.

    Release date:2016-09-01 09:33 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content