west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Biomaterial scaffold" 2 results
  • RESEARCH ADVANCE OF CORNEAL TISSUE ENGINEERING

    Objective To review research progress of corneal tissueengineering.Methods The recent articles on corneal tissue engineering focus on source and selection of corneal cells, the effects of growth factors on culture of corneal cells in vitro. The preparation and selection of three-dimensional biomaterial scaffolds and their b and weak points were discussed. Results The corneal tissue engineering cells come from normal human corneal cells. The embryo corneal cell was excellent. Several kinds of growth factors play important roles in culture, growth and proliferation of corneal cell, and incroporated into matrix.Growth factors including basic fibroblast growth factor, keratinocyte growth factor, transforming growth factor β1 and epidermal growth factor was favor to corneal cell. Collagen, chitosan and glycosaninoglycans were chosen as biomaterial scaffolds. Conclusion Human tissue engineering cornea can be reconstructed and transplanted. It has good tissue compatibility and can be used as human corneal equivalents.

    Release date: Export PDF Favorites Scan
  • DEVELOPMENT AND CHALLENGES OF ANNULUS FIBROSUS TISSUE ENGINEERING

    ObjectiveTo review the biomaterial and clinical prospects of annulus fibrosus tissue engineering. MethodsThe recent literature concerning annulus fibrosus tissue engineering, including cell source, bioactive molecules, and biomaterial was extensively reviewed and summarized. ResultsMesenchymal stem cells (MSCs) is an ideal seed cells. When annulus fibrosus cells and MSCs in the ratio of 2:1 are cultured, it shows the closest mRNA expression levels of annulus fibrosus-related markers. Bioactive molecules can be divided into 4 types:growth factors, morphogens, catabolic enzyme inhibitors, and intracellular regulators. They play an active role in promoting the synthesis of extracellular matrix, and maintaining intervertebral disc homeostasis and a balance between anabolic- and catabolic process in the disc. Based on the source, biological materials can be divided into natural materials, synthetic materials, and composite materials. The mechanical properties of the annulus fibrosus is an important basis for material design. Up to now, none of these scaffold materials is accepted as the most suitable one. The selection of scaffold materials is still to be further studied. The development of novel composite biomaterials is a trend. ConclusionThe annulus fibrosus tissue engineering for the anulus fibrosus regeneration and repair will bring very broad prospects for clinical application in future.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content