west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "CHANG Jiang" 1 results
  • Study on tailoring the nanostructured surfaces of cuttlefish bone transformed hydroxyapatite porous ceramics and its effect on osteoblasts

    ObjectiveTo investigate the formation of nanostructure on cuttlefish bone transformed hydroxyapatite (CB-HA) porous ceramics and the effects of different nanostructures on the osteoblasts adhesion, proliferation, and alkaline phosphatase (ALP) expression.MethodsThe cuttlefish bone was shaped as plate with diameter of 10 mm and thickness of 2 mm, filled with water, and divided into 4 groups. The CB-HA in groups 1-4 were mixed with different phosphorous solutions and then placed in an oven at 120℃ for 24 hours. In addition, the samples in group 4 were further sintered at 1 200℃ for 3 hours to remove nanostructure as controls. The chemical composition of CB-HA were analyzed by X-ray diffraction spectroscopy, Fourier transform infrared spectrum, and inductively coupled plasma (ICP). The physical structure was analyzed using scanning electron microscopy, specific surface tester, and porosity tester. The MC3T3-E1 cells of 4th generation were co-cultured with 4 groups of CB-HA. After 1 day, the morphology of the cells was observed under scanning electron microscopy. After 1, 3, and 7 days, the cell proliferation was analyzed by MTT assay. After 7 and 14 days, the ALP expression was measured by pNPP method.ResultsX-ray diffraction spectrum showed that the four nanostructures of CB-HA were made of hydroxyapatite. The infrared absorption spectrum showed that the infrared absorption peak of CB-HA was consistent with hydroxyapatite. ICP showed that the ratio of calcium to phosphorus of all CB-HA was 1.68-1.76, which was consistent with hydroxyapatite. Scanning electron microscopy observation showed that the nanostructure on the surface of CB-HA in groups 1-3 were large, medium, and small cluster-like structures, respectively, and CB-HA in group 4 had no obvious nanostructure. There were significant differences in the specific surface areas between groups (P<0.05). There was no significant difference in the porosity between groups (P>0.05). Compared with group 4, groups 1-3 have more pores with pore size less than 50 nm. After co-cultured with osteoblasts, scanning electron microscopy observation and MTT assay showed that the cells in groups 2 and 3 adhered and proliferated better and had more ALP expression than that in groups 1 and 4 (P<0.05).ConclusionThe size of cluster-like nanostructure on the surface of CB-HA can be controlled by adjusting the concentration of ammonium ions in the phosphorous solution, and the introduction of small-sized cluster-like nanostructure on the surface of CB-HA can significantly improve the cell adhesion, proliferation, and ALP expression of the material which might be resulted from the enlarged surface area.

    Release date:2019-03-11 10:22 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content