ObjectiveTo study the application of artificial intelligence based on neural network in breast cancer screening and diagnosis, and to summarize its current situation and clinical application value.MethodThe combined studies of neural network and artificial intelligence in the directions of breast mammography, breast ultrasound, breast magnetic resonance, and breast pathology diagnosis in CNKI and PubMed database were reviewed.ResultsPublic databases of mammography, such as Digital Database for Screening Mammography (DDSM), provided raw materials for the research of neural network in the field of mammography. Mammography was the most widely used data for screening and diagnosis of breast diseases by neural network. In the field of mammography and color doppler ultrasound, neural network could segment, measure, and analyze the characteristics, judge the benign or malignant, and issue a structured report. The application of neural network in the field of breast ultrasound focused on the diagnosis and treatment of benign and malignant breast diseases. Samsung Madison Group taken the lead in grafting research results into ultrasound instruments. Breast MRI had a lot of high-throughput information, which had became the breakthrough point for the joint study of artificial neural network and imaging omics. Pathological images had more data information to be measured, and quantitative analysis of data was the advantage of neural network. The combination of the two kinds of methods could significantly improve the diagnosis time of pathologists.ConclusionsTo study the application of artificial intelligence in breast cancer screening and diagnosis is to analyze the application of neural network in breast imaging and pathology. At present, artificial intelligence screening can be used as a physician assistant and an objective diagnostic reference assistant, to improve the diagnosis of breast disease. With the development of medical image histology and neural network, the application of artificial intelligence in medical field can be extended to surgical method design, efficacy evaluation, prognosis analysis, and so on.