west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "CUI Shaoguo" 1 results
  • A lightweight recurrence prediction model for high grade serous ovarian cancer based on hierarchical transformer fusion metadata

    High-grade serous ovarian cancer has a high degree of malignancy, and at detection, it is prone to infiltration of surrounding soft tissues, as well as metastasis to the peritoneum and lymph nodes, peritoneal seeding, and distant metastasis. Whether recurrence occurs becomes an important reference for surgical planning and treatment methods for this disease. Current recurrence prediction models do not consider the potential pathological relationships between internal tissues of the entire ovary. They use convolutional neural networks to extract local region features for judgment, but the accuracy is low, and the cost is high. To address this issue, this paper proposes a new lightweight deep learning algorithm model for predicting recurrence of high-grade serous ovarian cancer. The model first uses ghost convolution (Ghost Conv) and coordinate attention (CA) to establish ghost counter residual (SCblock) modules to extract local feature information from images. Then, it captures global information and integrates multi-level information through proposed layered fusion Transformer (STblock) modules to enhance interaction between different layers. The Transformer module unfolds the feature map to compute corresponding region blocks, then folds it back to reduce computational cost. Finally, each STblock module fuses deep and shallow layer depth information and incorporates patient's clinical metadata for recurrence prediction. Experimental results show that compared to the mainstream lightweight mobile visual Transformer (MobileViT) network, the proposed slicer visual Transformer (SlicerViT) network improves accuracy, precision, sensitivity, and F1 score, with only 1/6 of the computational cost and half the parameter count. This research confirms that the proposed algorithm model is more accurate and efficient in predicting recurrence of high-grade serous ovarian cancer. In the future, it can serve as an auxiliary diagnostic technique to improve patient survival rates and facilitate the application of the model in embedded devices.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content