Objective To investigate the relationship between exposure intensity and illumination time of blue light and replicative senescence of rat retinal pigment epithelial (RPE) cells.Methods Thirtysix 12-14 weeks Wistar rats were kept in the cage with a bluelight bulb [(450plusmn;10) nm], and were randomly divided into four groups (no light,nature light,500 lx light and 1000 lx light illumination), each has nine rats. The rats in each group were further divided into three subgroups according to illumination time (one month,two months or three months). Eyeballs were collected after intraperitoneal injection of 10% chloral hydrate. The right eye of each rat was embedded in paraffin and sectioned for hematoxylineosin (HE) staining, while frozen sections of the left eye were stained for the senescence-associated beta;-galactosidase (SA-beta;-Gal). The data were analyzed by SPSS11.5 statistical software.Results The amounts of SA-beta;-Gal positive RPE cells were significantly different between all groups under the same illumination time 17 (P=0.000), and between all subgroups of different illumination time with same exposure intensity (P<0.01)except for the control group (no light). Conclusion Bluelight can induce replicative senescence in rat RPE cells in an intensity and timedependent manner.
ObjectiveTo comprehensively analyze the recent advancements in the field of mesenchymal stem cells (MSCs) aging,and summary its achievements and its difficulty at the present. MethodsThe literature about MSCs aging was reviewed and analyzed. ResultsInducible telomerase reactivation of MSCs is successful to extend the life span of senescent cells,but it also has potential safety hazard.The age range presented in the research of age-related cell senescence is inconsistent,resulting in different outcomes.Many ways to improve cell in vitro culture conditions will help delay aging.Recent research indicates that oxidative stress theory is seemed to not completely explain cell aging. ConclusionFurther research of MSCs aging mechanism will help the tissue engineering transform to clinical application.