ObjectiveTo study the effects of recombinant human growth hormone (rhGH) on proliferation of human rectal cancer cell in vitro. MethodsThe experiment was divided into control group,rhGH group,Oxaliplatin (LOHP) group and rhGH+LOHP group. The double proliferation time of cells,cell inhibition rate,cell cycle, proliferation index (PI) and DNA inhibition rate of human rectal cancer line,HR8348,were studied by cell culture, MTT assay and flow cytometry on different concentration of rhGH. ResultsIn vitro the markedly accelerated effects of rhGH on multiplication of HR8348 cell line were not found: there was no statistical significance as compared rhGH group with control group or compared rhGH+LOHP group and LOHP group (Pgt;0.05). The double proliferation time of cells was markedly lengthened, cell inhibition rate and the cells arrested in G0-G1 phase were obviously increased, meanwhile, the cells in S phase (P<0.05) and G2-M phase and PI were markedly decreased and DNA inhibition rate was obviously risen as compared rhGH+LOHP group with control group or rhGH+LOHP group and rhGH group (P<0.01).ConclusionIn vitro rhGH does not accelerate the multiplication of human rectal cancer cells.
ObjectiveTo construct DPC4 gene recombinant expression vector and to study the inhibitory effect of DPC4 on the growth of human pancreatic adenocarcinoma cell line (PC3) cells.MethodsDPC4 cDNA was amplified from K562 cell line using RTPCR, and was cloned into the pcDNA3.1 vector to construct a recombinant expression vector plasmid pcDNA3.1DPC4. The recombinant expression plasmid was transferred into PC3 cells by liposome method. After G418 selection, cell cycle and apoptosis were assessed by flow cytometry, then the cell growth rate was estimated by cell count. The cells being not transferred plasmid and transferred pcDNA3.1 plasmid were used as controls.ResultsThe DPC4 gene recombinant expression vector was constructed. Wildtype DPC4 gene attributed to the increase of G1 phase cells and the decrease of S phase cells in PC3 cells,and could inhibit the growth of PC3 cells, the cell growth rates was reduced to 34.3%-41.1% of that of the controls, but cell apoptosis was not observed on all groups. ConclusionWildtype DPC4 gene could inhibit the proliferation of human pancreatic adenocarcinoma cells and could become one of the target genes of pancreas adenocarcinoma gene therapy
For research the relationship between the expression of vascular endothelial growth factor (VEGF) and the cell proliferation. The expression of VEGF was evaluated while the cell cycle of hepatoma cell line Hep G2, which was synchronized at G0 phase with serum deprivation, and reinitiated with TPA and blocked with antisense oligonucleotides of c-jun. Results: Hep G2 cell did not express VEGF at G0 phase. TPA could induce the expression of VEGF as well as initiation of cell cycle. The antisense oligonucleotides of c-jun could prohibit the expression of VEGF and arrest the cell cycle at G0 phase. Conclusion: The fact that the expression of VEGF accompanies the initiation of cell cycle suggests that they be regulated by the same singnal pathway, the expression of VEGF may be a marker indicating the proliferation of hepatoma cells.
Objective Metal wear products cause the aseptic loosening of joint prosthesis. To investigate the effect of metal ions Co2+ and Cr3+ on the osteoblast apoptosis, cell cycle distribution, and secretion of alkal ine phosphatase (ALP), and to search a method to prevent and treat aseptic loosening. Methods The mouse calvarial osteoblasts (MC3T3-E1) were cultured in vitro to 3-5 generations (5 × 105 cells/ mL) and divided into 2 groups: the experimental group and the controlgroup. The osteoblasts were cultured in α-MEM medium containing 10%FBS (the control group), and the mixed solution ofCoCl2 and CrCl3 was added after the osteoblasts cultured in α-MEM medium containing 10%FBS attached completely (the experimental group). At 12, 24, and 48 hours after culture, the osteoblast apoptosis and the cell cycle distribution were assessed by flow cytometry; and ELISA method was appl ied to detect ALP content in serum supernatant. Results At 12, 24, and 48 hours after culture, the apoptosis rates in the experimental group (13.90% ± 0.52%, 14.80% ± 0.41%, and 13.40% ± 0.26%) were significantly higher than those in the control group (8.56% ± 0.31%, 8.19% ± 0.24%, and 2.15% ± 0.11%), (P lt; 0.05); G2M (dividing phase) distribution ratio significantly decreased and G0G1 (dormancy stage) distribution ratio significantly increased when compared with those in the control group (P lt; 0.05); and the absorbency (A) values of ALP were 0.955 ± 0.052, 0.624 ± 0.041, and 0.498 ± 0.026 in the exprimental group, and were 1.664 ± 0.041, 1.986 ± 0.024, and 2.192 ± 0.041 in the control group, showing significant differences between 2 groups (P lt; 0.05). Conclusion Metal ions Co2+ and Cr3+ have a marked effect on osteoblasts cell cycle distribution, which can make most of the cells to be in dormancy stage (G0G1), up-regulate the apoptosis rate and inhibit the releasion of ALP from osteoblasts.
Objective To observe the replicative senescence of rat articular chondrocyte cultured in vitro so as to provide reference for the succeeding experiment of using medicine interfere and reverse the cataplasia of tissue engineering cartilage or probing cataplasia mechanism.Methods Different generations(P1, P2, P3 and P4) of the chondrocytes were detected with the methods of histochemistry for β-galactosidase (β-gal), electronmicroscope for ultromicrostructure, immunocytochemistry for proliferating cell nuclear antigen (PCNA),alcian blue stain for content and structure of sulfatglycosaminoglycan (GAG) of extracellular matrix (ECM),reverse transcriptionpolymerase chain reaction (RTPCR) for content of collagen Ⅱ,flow cytometry for cell life cycle and proliferative index(PI) to observe senescence of chondrocytes.Results In the 4th passage,the chondrocytes emerging quantitively positive express of β-gal,cyto-architecture cataplasia such as caryoplasm ratio increasing and karyopycnosis emerging under electronmicroscope ,cell life cycle being detented on G1 phase(83.8%),while in P1, P2, P3 the content of G1 phase was 79.1%, 79.2%, 80.8% respectively. In the 4th passage, PI decreased(16.2%),while in P1, P2, P3, it was 20.9%, 20.8%, 19.2%. The positive percentage of PCNA,the content of GAG(long chain molecule) and the positive expression of collagen Ⅱ diminished,all detections above were significantly different (Plt;0.01) when compared the 4th passage with the preceding passages.Conclusion Chondrocytes show the onset of senescence in the 4th passage.
Objective To investigate cell cycle as a new tool to evaluate the biocompatibility of biomaterials.Methods The cell cycle and the expression of related genes were analyzed by the methods of immunocytochemistry, protein blotting, RT PCR and flow cytometry. Results The physical properteis, chemical properties and topological properities of biomaterials could not only influence cell cycle of the cells attached onto biomaterials but also affect the expression of related genes of target cells. Conclusion As an important extension of routine proliferation epxeriments, the study of cell cycle control will be great help for us to to study the cell group as an organic society. It revealed the balance between cell proliferation, cell differentiation and apotosis. It is suggested that the study of cell cycle control will play a key role in the research of tissue engineering.
In order to investigate the effect of insulin-like growth factor-1 (IGF-1 on the cyclic change of tendon cell, the 6th generation of cultured tendon cell were selected, and 20 ng/ml IGF-1 was added to the medium. After 48 hours, the cells were determined by flow cytometer, as well as the control cells. The results showed that the time of G1 phase, DNA synthesis phase and G2M phase in IGF-1 group were 11.8 hours, 21.4 hours and 6.8 hours respectively, while those were 25.6 hours 22.6 hours and 21.8 hours respectively in the control group. It was showed that the time needed for G1 phase and G2M phase was shortened by IGF-1.
Objective To investigate inhibited effects of melatonin (MLT) on proliferative activity of retinoblastoma cell line HXORB44 and its related mechanism. Methods HXO-RB44 cells were treated by MLT of different concentration (10-10, 10-9, 10-8, 10-7 mmol/L. Cell counting and tetrazolium dyereduction assay (MTT) were used to determine the effect of MLT on the survival and proliferation of HXO-RB44 cells. Apoptotic nuclei were further analyzed by HoechstPI fluorescence staining. Flow cytometry was used to measure the fluorescent intensity of ROS, cell cycle distribution and apoptosis. Results 10 -6 mmol/L (or exceed) of MLT could inhibit the proliferation of HXO-RB44cells in vitro while 10-7 mmol/L (or below) of MLT couldn't. With the increase of MLT concentration from 10-10 mmol/L to 10-7 mmol/L, HXO-RB44 cells gradually increased the expression of ROS. Hoechst staining showed that 4, 8, 12 and 24 hours after the incubation with MLT, the nuclear pyknosis and nuclear fragmentation increased in HXORB44 cells. The extent of apoptosis was proportional to the concentrations of MLT. Flow cytometry revealed that with the increasing of MLT concentration, G0/G1 and G2/M phase cells increased, S phase cells decreased. The apoptotic rate was also increased. Conclusion 10 -6 M of MLT could inhibit the proliferation of HXO-RB44 cells. This effect may relate to the increased ROS expression, cell cycle arrest at G0/G1 phase and apoptosis of HXO-RB44 cells.
Objective To investigate the effect of the 8-bromum-cyclic adenosine monophosphate (8-Br-cAMP) on the telomerase activity and changes of cell cycle in retinoblastoma (RB) cells. Methods The cultured RB cells were divided into the experimental group (8-Br-cAMP) and control group. After cultured for 24, 48 and 72 hours in vitro, the telomerase activity of RB cells was detected by polymerase chain reaction enzyme-linked immunosorbent assay (PCR-ELISA) and the changes of cell cycle were detected by flow-cytometry. Results The difference of telomerase activity was significant between the experimental groups and control group (Plt;0.01). There was a negative correlation between the A value of absorbance and the time in the experimental groups (r=-0.778 9, F=33.936, Plt;0.01). The changes of the cell cycle were that the percentages increased in G1 phase and decreased in S phases. Conclusion 8-Br-cAMP may weaken telomerase activity, affect the cell cycle, and inhibit the proliferation of RB cells. (Chin J Ocul Fundus Dis,2004,20:358-360)
Objective To evaluate the role of the cell cycle related genes cyclinD1 and Bcl-2 protein expression in the pathogenesis and infilt ration of the uveal melanoma. Methods Using immunohis tochemistry to detect the cyclinD1 and bcl-2 protein expression in 96 cases of uveal melanoma. Results The expression content of bcl-2 was high in uveal melanoma, and there wasn't any relationship between bcl-2 cell positivity and tumor cell type and extrascleral extension. In contrast, cyclinD1 expression was higher in epithelial cell uveal melanoma than mix cell and spindle cell varieties. There was a positive correlation between cyclinD1 cell positivity and extrascleral extension. Conclusion The expression of bcl-2 protein is important for the survival of the uveal melanoma. CyclinD1 may serve as a sensitive index of its malignancy. (Chin J Ocul Fundus Dis, 2001,17:44-46)